# ロードピア配合設計システム

# 操作マニュアル

大陸建設株式会社

## 索引

第1章 お使いになる前に 第1節 必要な動作環境 第2章 初期データの登録 第1節 初期設定画面 初期設定 第2節 環境設定 環境設定 第3節 規格の登録 粒度規格の登録 混合物の規格の登録 第4節 材料の登録 アスファルトの登録 石粉の登録 再生用添加剤の登録 骨材の登録 新骨材の登録 細骨材の登録 粗骨材の登録 補足(骨材の追加と削除) 再生骨材の登録

第3章 配合設計 第1節 配合設計作業の開始 第2節 室内配合設計 目標粒度の設定 骨材配合率の設定 比重補正 再生添加剤の計算 アスファルト量の設定 試験に用いる材料の比重 理論最大密度の計算 マーシャル安定度試験 マーシャル試験結果図表 設定アス量における マーシャル試験 第3節 プラント配合設計 ホットビンの性状と合成粒度 現場配合表 抽出骨材の性状と 回収アスファルトの針入度 試験練り混合物のマーシャル試験 最終確認

#### 第4章 配合設計書の印刷

第1節 印刷の開始
 印刷フォームの表示
 第2節 印刷の諸設定
 オフセット
 プリンタの設定
 第3節 印刷
 プレビューフォーム

#### 第5章 合材ファイルの管理

第1節 合材ファイルを開く
 作成した合材ファイルを開く
 第2節 合材ファイルを保存する
 合材ファイルを保存する
 名前を変えて保存する
 第3節 合材ファイルを削除する
 合材削除

# 第1章 お使いになる前に

## 第1節 必要な動作環境

配合設計プログラムをご利用いただくために、 以下の環境が必要です。 ・Windows 2000/Windows XP/Windows Vista/Windows 7 Windows 8/Windows 8.1/Windows10

インストールの注意

・インストールを始める前に、あらかじめ他の Windows アプリケーションをすべて終了させてください。

## 第2章 初期データの登録

## 第1節 プラント情報登録

#### 第1項 初期設定

「ロードピア配合設計システム」を 新規に起動させると最初に下の画面 がでますので「OK」を押してください。

|             | peditsokatuhyo |    | × |
|-------------|----------------|----|---|
| まず最初にプラントの登 | 録を行います。        |    |   |
|             |                | OK | - |

その後、プラント情報を登録するウィ ンドウ(以下フォーム)が出ますので、 登録してください。

| 111( <u>E)</u>             |                   |      |           |           |
|----------------------------|-------------------|------|-----------|-----------|
| プラント名                      |                   |      |           |           |
| tairiku-1000               | ~                 | 計量順  | ピン名       | 粒度範囲      |
| ✔ 標準のブラントにする               |                   | 1    | 1BIN      | 37.5_13.2 |
| ※標準プラントのチェック<br>他のプラントを標準の | 2                 | 2BIN | 13.2_4.75 |           |
| 「「一日日日」                    | 55 55 T CO C NCCV | 3    | 3BIN      | 4.75_2.36 |
| 1000                       | ka                | 4    | 4BIN      | 2.36_0    |
| 1000                       | Ng                | 5    |           |           |
| 力計の係数                      |                   | 6    |           |           |
| 1 0                        |                   |      |           |           |

尚、「プラント名」、「バッチの計算 値」、「カ計の係数」、「ビン名」の 入力は必須です。(使用しないビン名 は空白にします) 「登録」ボタンを押して、無事登録され ると以下のフォームが出ますので「OK」 を押してください。



「OK」を押すと次にメインフォームが 表示されます。次回から起動時にはメイ ンフォームが表示されます。



#### 第1項 環境設定

各種の環境設定をします。 また、会社名の登録もここで行います。

| 7 | ァイル(F) データ(D) オプション(O) | バージョン(V) |
|---|------------------------|----------|
|   | 環境設定(0)                |          |
| - | 会社情報登録(K)              |          |
|   | データベースチェック(Y)          |          |
|   | XMLコンバート(X)            | 雨之会員会員上つ |
|   | プラント別フォルダ分け(Z)         |          |

メインフォーム上部のメニューにある 「オプション(0)」→「環境設定(0)」 を押すことで、環境設定フォームが表示 されます。

| }     |                     |                     | 各種               | 設定 |    |         |
|-------|---------------------|---------------------|------------------|----|----|---------|
|       |                     |                     |                  |    | 登録 | 閉じる     |
| 保存場所  | 計算                  | ED刷                 | その他              |    |    |         |
| データの  | )保存先                |                     |                  |    |    |         |
| 0-    | ドピアデー               | -タの保                | 存先               |    |    |         |
| C:    | éUsers¥ta<br>€acca∎ | airiku¥E            | Documents¥<br>存生 |    |    | 参照      |
| C3    | (Users¥tz           | - 2001#<br>airiku¥f | Documents        |    |    | 恭昭      |
|       |                     |                     |                  |    |    | 2 2 2 1 |
| オープニン | が画面                 |                     |                  |    |    |         |
|       |                     |                     |                  |    |    | 参照      |
| 合材ファ  | イルの関連               | 転付け                 |                  |    |    |         |
| 関     | 車付ける                |                     | AZDR             |    |    |         |
|       |                     |                     |                  |    |    |         |
|       |                     |                     |                  |    |    |         |
|       |                     |                     |                  |    |    |         |
|       |                     |                     |                  |    |    |         |
|       |                     |                     |                  |    |    |         |
|       |                     |                     |                  |    |    |         |
|       |                     |                     |                  |    |    |         |
|       |                     |                     |                  |    |    |         |

保存場所

[データパス]

配合設計のデータをどこに格納するかという設定です。変更先にプラントのデータ が無い場合は、次回起動時に初期設定 画面がでますので、プラントデータを再登 録してください。

| <b>7</b> | スクトップ    | _ |
|----------|----------|---|
|          | ホームグルーフ  | ſ |
| 12       | tairiku  |   |
| 4        | OneDrive | 8 |
| Þ        | Roaming  |   |
|          | アドレス帳    |   |
| Þ        | お気に入り    |   |
| Þ        | タウンロード   |   |
|          | デスクトップ   |   |
| Þ        | ドキュメント   |   |
|          | ドカチャ     |   |

[関連づけ]

配合設計ファイル (データ名.gozのファ イル)から Roadpia を起動できるよう、ファ イルの関連づけを行います。

[解除]

関連づけを解除する場合は隣の解除ボ タンを押してください。

## ·会社情報

[ライセンス情報]

会社名、住所、電話番号等を入力します。 このデータは鑑の印刷の際に使用されます。 新規に入力した場合や、住所変更等でデー タの変更をした際は「更新」ボタンを押して 現在開いている配合設計書に反映してください。

#### 会社情報

|      |       | 会社・プラント情報    |  |
|------|-------|--------------|--|
| 初期张上 | 保存    | ate a        |  |
|      | 会社情報  |              |  |
|      | 会社名   | 大陸建設株式会社     |  |
|      | 事業所名  |              |  |
|      | (主所1  | 印閣市星が満南1-1-2 |  |
|      | 住所2   |              |  |
|      | 電話番号  | 0154-65-1000 |  |
|      | FAX番号 | 0154-65-1001 |  |
|      |       |              |  |
|      | to    | 参照           |  |
|      |       |              |  |



#### 計算



[粒度規格]

粒度規格の登録の際に「\_\_」(ハイフン)を有効にするかどうかのチェックです。 粒度規格の無い合材を作成する場合に 使用します。 [合成粒度の計算]

合成粒度の計算時に小数点第何位まで 計算するかの設定です。通常1~2です。

[改質剤使用時]

改質剤とアスファルトのアス量設定時に 使用される配合率の有効少数桁を第3位 迄にします。

#### [理論最大密度の計算]

新材の配合率の有効少数桁数を第1位 までにします。ただし、[改質剤使用時]の チェックがついている場合はそちらが優先 されます。

[マーシャル試験グラフ] マーシャル試験グラフを前バージョンの 二次曲線方式に切り替えます。

[計算数値] 数値を丸める際、偶数値になるようにし ます。

•印刷

印刷



グラフの色を設定します。

バーが出力されます。

[印字設定]

「作成時を表示しない」にチェックされると、 印刷の際に作成年のみ出力されます。 「バージョンナンバーを印字する」にチェッ クされると印刷の際に現在のバージョンナン

・その他



「起動時に骨材のフォームを表示させる」 にチェックされると起動時に骨材の選択フォー ムが表示されます。

前バージョンからの移行をスムーズにする目的 です。

「品管データの目標粒度はホットビン配合の 目標粒度とする」とチェックされると品管管理 の合材データにおける目標粒度はホットビン配 合時の目標粒度となります。 ボタン

「 登録 」 ボタン 現在の設定を保存します。

「閉じる」ボタン 設定を保存せずに終了します。

次に合材の規格を登録します。

## 第3節 規格の登録

メインフォーム画面

| 9                 |                 |        |                  |                 |          | 総     | 括表:ta     | iriku-1( | 00:.Goz    | 2   |         |      |       |          |              |
|-------------------|-----------------|--------|------------------|-----------------|----------|-------|-----------|----------|------------|-----|---------|------|-------|----------|--------------|
| アイル( <u>E</u> ) ラ | データ( <u>D</u> ) | オプション  | ( <u>O</u> ) パー: | ÿ∃>( <u>V</u> ) |          |       |           |          |            |     |         |      |       |          |              |
| 昆合物名 再结           | 生粗粒度            | 01עבגק |                  |                 |          |       | ¥         | プラント     | tairiku-10 | 00  |         | ¥    | Æ     | S ED BIL | □ 保在         |
| 印刷名再生             | 生粗粒度)           | עבגק   |                  |                 |          |       | 粒         | 度規格      | [0]標準      |     |         | ~    |       |          |              |
| 作成日               |                 |        |                  |                 | □ 混合物を   | 全て表示す | る混合       | 物の規格     | [0]標準      |     |         | ~    | 骨杉    | 加選択      | データ入力        |
| 更用材料1             | 使用材料            | 2 配合設  | 計1 配合            | 設計2             | 品質·性能調   | 試験結果  | 8         |          |            |     |         |      |       |          |              |
| 瀝青材               |                 |        |                  |                 | 産地       |       |           | 納入者      |            |     |         | クリアー |       |          |              |
| 1                 | 針入度             | 軟化点    | 伸度               | 蒸針              | 北 薄変化    | 薄針入   | 可溶分       | 引火点      | 密度         | 混粘度 | 締粘度     | タフネス | 77971 | 設針入      | フラース脆        |
| 規格値               |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
| 混合後               |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
| 新A性状              |                 |        |                  |                 |          |       |           |          | 1          | 2   |         |      |       |          |              |
| 混合後               |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
| 改質剤               |                 | クリア    | 1                |                 |          |       |           |          |            |     |         |      |       |          |              |
| 1                 | 産地              | 納入     | 者 固刑             | 纷               | 粘度       | スチレン  | pH        | 凝固分      | 密度         |     |         |      |       |          |              |
| 規格値               |                 | Ĩ.     |                  |                 |          |       |           |          | i.         |     |         |      |       |          |              |
|                   |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
| 1                 | 1               | , i    |                  |                 |          |       |           |          | J.         |     |         |      |       |          |              |
| 再生添加              | 剤               | クリア    |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
|                   |                 |        | 産地               |                 | 納入者      | -     |           |          |            |     |         |      |       |          |              |
|                   | 密度              | 動粘     | 度 引り             | 点               | 薄変化      | 薄粘比   |           |          |            |     |         |      |       |          |              |
| 規格値               |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
| 性状値               | 1               |        | 1                |                 |          |       |           |          |            |     |         |      |       |          |              |
| 活力の大力学            | a               | עוול   |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
| 746/0011044       | 1 走物            | (約入:   | まし 古ト            | -ff             | a-21.0-7 | nH    | tt ∧c≣t-6 | a        |            |     |         |      |       |          |              |
| 坦坎(市              | /±-'5           | 1.127  | 8 <b>3</b> .7    |                 | u cara x | pii   | 1.19913   | -        |            | 備:  | 考       |      |       | □備       | 考を鑑に記入する     |
| 7921010           |                 |        |                  |                 |          |       |           |          |            | 1   |         |      |       |          | ^            |
|                   |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
|                   |                 |        |                  |                 |          |       |           |          | _          |     |         |      |       |          | $\checkmark$ |
|                   |                 |        |                  |                 |          |       |           |          |            | インフ | フォメーション |      |       | □ インフォ:  | メーション機能オフ    |
|                   |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
|                   |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
|                   |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |
|                   |                 |        |                  |                 |          |       |           |          |            |     |         |      |       |          |              |

次に合材の規格の登録を行います。 登録する規格には「粒度規格」と「混合物 の規格」の2つがあります。

以降は例として、再生粗粒度アスコン(20%) の配合設計書を作成する目的で規格を登録 する事にします。 そのまえに・・・

・メインフォームの「混合物名」の横にある テキストボックス(白い四角)に「再生粗粒 度アスコン01」と入力してください。

・メインフォームの「印刷名」の横にあるテ キストボックスに「再生粗粒度アスコン」と 入力してください。

#### 第1項 粒度規格の登録

最初に、粒度規格を登録することにします。

| プラント   | tairiku-1000 | ~ |
|--------|--------------|---|
| 粒度規格   | [0]標準        | ~ |
| 混合物の規格 | [0]標準        | ~ |

#### ボタンから

|    | ファイル(F)  | データ(D) | オプション(0) |
|----|----------|--------|----------|
| 粒  | 度規格(R)   |        | 7701     |
| 混  | 合物の規格(K  | )      | ערגי     |
| プラ | iンド情報(P) |        |          |
| 材  | 料(Z)     |        |          |
|    | 1丈用17月7日 | 使用材料   | 2 配合設計1  |

メニューから

メインフォームの「粒度規格」ボタンを 押すか、フォーム上部のメニューにある 「データ(D)」→「粒度規格(R)」を押 すことで、粒度規格の入力フォームが表示 されます。

尚、標準的な規格は予め登録してありま すが、新しい規格等が必要なときは、追加 して登録ができます。今回は操作の説明の ため、新規に入力することにします。

フォームが表示されましたら、粒度規格の 規格名と規格値を入力します。

#### 粒度規格のフォーム



データは、上の例のように下限値と上限 値をアンダースコア「\_\_\_」(シフト+ろ)で 結んで入力します。

100%のように、上限値と下限値が同じ場合は、ひとつだけデータを入力してください。

| 粒度規    | サンプ,<br>格名「[RG] ī      | ルデータ<br>再生粗粒度フ | アスコン」 |
|--------|------------------------|----------------|-------|
|        | フルイ目                   | 規格値            |       |
|        | 26.5                   | 100            |       |
| _      | 19                     | 95_100         |       |
| _      | 13.2                   | 70_90          |       |
| _      | 4.75                   | 35_55          |       |
| _      | 2.36                   | 20_35          |       |
| _      | 0.600                  | 11_23          | _     |
| _      | 0.300                  | 5_16           | -     |
| _      | 0.150                  | 4_12           | . 1   |
|        | 0.075                  | 2_7            |       |
| *<br>L | <u>規格名は必</u><br>てください。 | <u>、ず半角</u> で入 | .カ    |

## 第2項 混合物の規格の登録

次に、混合物の規格を登録します。

| プラント   | tairiku-1000 | ¥ |
|--------|--------------|---|
| 粒度規格   | [0]標準        | ¥ |
| 混合物の規格 | [0]標準        | ¥ |

ボタンから

|    | ファイル(F)      | データ(D) | オプション(0)      |
|----|--------------|--------|---------------|
| 粒  | 度規格(R)       |        | 01עבגי        |
| 混  | 合物の規格(K      | .)     | עבגי          |
| プラ | 5ント情報(P)     |        | 1.000 million |
| 材  | 料(Z)         |        |               |
|    | 127111717771 | 使用材料   | 2 配合設計1       |

メニューから

メインフォームの「混合物の規格」ボタン を押すか、フォーム上部のメニューにある 「データ(D)」→「混合物の規格(K)」 を押すことで、粒度規格の入力フォームが 表示されます。

尚、標準的な規格は予め登録してありま すが、新しい規格等が必要なときは、追加 して登録ができます。今回は操作の説明の ため、新規に入力することにします。

フォームが表示されましたら、混合物の規 格名と規格値を入力します。

#### 混合物の規格フォーム

| 見格名 [RC | i]再生粗粒质 | モアスコン |         | ~     |
|---------|---------|-------|---------|-------|
| 骨材の規格   | 3       |       | マーシャル試験 | 険の規格  |
|         | 細骨材     | 粗骨材   |         | 規格値   |
| 見掛密度    | -       | -     | 実際密度    | -     |
| 表乾密度    | 2.5_    | 2.5_  | 空隙率     | 3_7   |
| がさ密度    | -       | *     | 飽和度     | 65_85 |
| 吸水率     | -       | _3.0  | 安定度     | 4.9_  |
| 安定性損    | _12     | _12   | 70~値    | 20_40 |
| ロス減量    | -       | _30   | S/F     | -     |
| 細長扁平    | -       | -     | 残留安定    | -     |

データは、上の例のように下限値と上限 値をアンダースコア「\_\_\_」(シフト + ろ)で 結んで入力します。

尚、「 \_\_\_2.5 」の場合は「 2.5以下 」を表し、 「 2.5\_\_ 」の場合は「 2.5以上 」であることを 表します。



|       | 規格値   |
|-------|-------|
| 実際密度  | -     |
| 空隙率   | 3_7   |
| 飽和度   | 65_85 |
| 安定度   | 4.9   |
| フロー値  | 20_40 |
| S/F   | -     |
| 残留安定度 | -     |

#### 第4節 材料の登録

次に、使用する材料の登録を行います。

以降は例として、再生粗粒度アスコン(20%) の配合設計書を作成する目的で材料を登録 する事にします。

尚、今回の合材は以下の材料を使うことに します。

| 材料名         | 登録先                    |  |
|-------------|------------------------|--|
| ストアス 80-100 | アスファルト                 |  |
| 再生添加剤       | 再生用添加剤                 |  |
| 石灰石粉        | 石粉                     |  |
| R13-0       | 再生骨材                   |  |
| 砂           |                        |  |
| 砕石 5-2.5    | ±د_ب_++                |  |
| 砕石 13-5     | ₩111 <del>0</del> 112] |  |
| 砕石 20-13    |                        |  |

まず最初にアスファルトを登録することにします。

第1項 アスファルトの登録

最初に、アスファルトの性状を登録 します。

| ( | 使   | 用材料1 | 使用 | 材料 | 2   1 | 配合影 | 計  |
|---|-----|------|----|----|-------|-----|----|
|   | 瀝青材 |      |    |    |       |     |    |
|   |     |      | 針入 | 度  | 軚     | 化点  | ſŧ |
|   |     | 相救債  |    |    |       |     |    |

ボタンから

|                                                                                                                 | 総括                     |
|-----------------------------------------------------------------------------------------------------------------|------------------------|
| ファイル(E) データ(D) オプシ                                                                                              | ョン( <u>0)</u> バージョン(⊻) |
| 粒度規格(R)<br>混合物の規格(K)<br>プランド情報(P)                                                                               |                        |
| 材料(Z) ▶                                                                                                         | アスファルト(A)              |
| □<br>□<br>②<br>□<br>②<br>②<br>②<br>②<br>②<br>②<br>③<br>③<br>③<br>③<br>③<br>③<br>③<br>③<br>③<br>③<br>③<br>③<br>③ | 改質材(K)<br>再生用添加剤(T)    |

メニューから

メインフォームの「瀝青材」ボタンを 押すか、フォーム上部のメニューにある 「データ(D)」→「材料(Z)」→「アス ファルト(A)」を押すことで、アスファル トの入力フォームが表示されます。

フォームが表示されましたら、材料名、 品質、規格値を入力します。

## アスファルトの登録フォーム

| 2             |                       | アスフ   | アルトの登録      |        |         |
|---------------|-----------------------|-------|-------------|--------|---------|
| アイル( <u>Z</u> | )                     |       |             |        |         |
| 材料名           | ストアス80-100-01         |       |             |        | ~       |
| 印刷名           | ストアス80-100            |       |             |        |         |
| 產 地           | 釧路市産                  |       |             |        |         |
| 納入者           | 大陸石油(株)               |       |             |        |         |
| 記録中日          | 2016/06/27            |       |             | ~      |         |
|               | 2010/00/27            | 7     | ~           |        | ~       |
| -             |                       |       | 混合後         | 規格値    | 混合後規格   |
| 針入唐           | [[25°C](1/10mm)       | 92    | 89          | 80_100 |         |
| 軟化点           | i(*C)                 | 46    | 45          | 42_50  |         |
| 伸度[]          | L5*C](cm)             | 100+  | 100+        | 100_   |         |
| 蒸発後           | 切針入度比(%)              | 98    | 102.7       | _110   |         |
| 薄膜加           | 熱 変化率(%)              | 0.06  | 0.04        | _0.6   | 5       |
| 薄膜加           | 熱針入(%)                | 65.6  | 71.9        | 50_    |         |
| 可溶分           | (%)                   | 99.3  | 99.8        | 99_    |         |
| 引火点           | i(*C)                 | 354   | 354         | 260_   |         |
| 密度[1          | 15*C](g/cm3)          | 1.016 | 1.025       | 1.000_ |         |
| 粘度(9          | 6F5)混合温度(*C)          | -     | 160         | -      |         |
| 粘度(           | 5F5) 締固温度(*C)         | -     | 145         |        |         |
| タフネフ          | ( (N- m)              | -     | <u> </u>    | -      |         |
| テナシ           | ティ <mark>(№ m)</mark> | -     | [=          |        |         |
| 設計針           | 入度                    | -     | 90          | -      |         |
| 75-7          | 、脆化点                  | -     | -           | -      |         |
|               |                       |       | <b>R</b> (# | 存      | 保存して閉じる |

データは、上の例のように下限値と 上限値をアンダースコア「\_\_」(シフト +ろ)で結んで入力します。

尚、「\_\_100」の場合は「100以下」 を表し、「100\_」の場合は[100以上] であることを表しています。 サンプルデータ

材料名「ストアス 80-100-01」 印刷名「ストアス 80-100」 産地 「釧路市産」 納入者「大陸石油(株)」 試験日「2016/6/27」

| 新アス   | 再アス                                                                                                                                                                  | 規格値                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 92    | 89                                                                                                                                                                   | 80_100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 46    | 45                                                                                                                                                                   | 42_50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100+  | 100+                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 98    | 102.7                                                                                                                                                                | _110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.06  | 0.04                                                                                                                                                                 | _0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 65.6  | 71.9                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 99.3  | 99.8                                                                                                                                                                 | 99_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 354   | 354                                                                                                                                                                  | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.016 | 1.025                                                                                                                                                                | 1.000_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -     | 160                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -     | 145                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -     | -                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -     | -                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -     | 90                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -     | -                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 新アス<br>92<br>46<br>100+<br>98<br>0.06<br>65.6<br>99.3<br>354<br>1.016<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | <ul> <li>新アス</li> <li>第アス</li> <li>92</li> <li>89</li> <li>46</li> <li>45</li> <li>100+</li> <li>100+</li> <li>98</li> <li>102.7</li> <li>0.06</li> <li>0.04</li> <li>65.6</li> <li>71.9</li> <li>99.3</li> <li>99.3</li> <li>99.3</li> <li>99.3</li> <li>99.3</li> <li>35.4</li> <li>35.4</li> <li>35.4</li> <li>35.4</li> <li>1.025</li> <li>1.016</li> <li>1.016</li></ul> |

※<u>新アス・再アス・規格値は必ず半角</u>で 入力してください。尚、密度は必須で入力 してください。

また、再生添加剤を使用する場合は設計 針入度も必須です。

\_\_\_\_\_

## 第2項 石粉の登録

次に石粉の性状を登録します。

| 石粉  |    | クリア |  |
|-----|----|-----|--|
| 材料名 | 産地 | 納入者 |  |
| 規格値 |    |     |  |

ボタンから

| Ĩ |                       |                       | .ei          | 総括                                |
|---|-----------------------|-----------------------|--------------|-----------------------------------|
|   | ファイル(E)               | データ( <u>D</u> )       | オプシ          | /ヨン( <u>O) パージ</u> ョン( <u>V</u> ) |
|   | 粒度規格<br>混合物の<br>プラント情 | i(R)<br>規格(K)<br>報(P) |              | 1                                 |
|   | 材料(Z)<br>1史/H1/17731  | 使用材料                  | ▶<br> 2   82 | アスファルト(A)<br>改質材(K)               |
|   | 瀝春材                   |                       |              | 再生用添加剤(T)                         |
|   |                       | 針入度                   | 軟化           | 石粉(Y)                             |

メニューから

メインフォームの「石粉」ボタンを押すか、 フォーム上部のメニューにある「データ(D)」 →「材料(Z)」→「石粉(I)」を押すことで、 石粉の入力フォームが表示されます。

フォームが表示されましたら、材料名、品質、 規格値を入力します。

データは、右上の例のように下限値と上限 値をアンダースコア「\_\_」(シフト+ろ)で結 んで入力します。

尚、「\_\_100」の場合は「100以下」を表し、 「100\_\_」の場合は[100以上]であることを 表しています。

## 石粉の登録フォーム

| 3      |            | 石粉0   | )登録        | - 0    | × |
|--------|------------|-------|------------|--------|---|
| アイル(Z  | ()         |       |            |        |   |
| 材料名    | 石灰石粉01     |       |            |        | v |
| 印刷名    | 石粉         |       |            |        |   |
| 産 地    | 釧路産        |       |            |        |   |
| 讷入者    | 大陸石灰(株     | ;)    | 515<br>717 |        |   |
| 試験日    | 2016/06/22 | 7     | ~          |        |   |
|        |            | 性状値   | 規格値        | t I    |   |
| 711-TE | 3 600μm    | 100   | 100        |        |   |
| "      | 300µm      | 100   | 100        |        |   |
| "      | 150µm      | 96.5  | 95_10      | 00     |   |
| "      | 75µm       | 83.0  | 80_90      | 0      |   |
| 密度     |            | 2.749 | 2.6_       |        |   |
| 水分(9   | %)         | 0.17  | _1.0       |        |   |
| PI     |            |       |            |        |   |
| 加熱変    | E質         |       |            |        |   |
| 70-li  | 直(%)       |       |            |        |   |
| 吸水脑    | 《張(%)      |       |            |        |   |
| 剥離討    | (験(合·否)    |       |            |        |   |
|        |            | 🔚 保石  | 7          | 保存して閉じ | 5 |

| ザ   | └ンプルデータ                |
|-----|------------------------|
| 材料名 | 「 石灰石粉01 」             |
| 印刷名 | 「 石粉 」                 |
| 産地  | 「釧路産」                  |
| 納入者 | 「大陸石灰(株)」              |
| 試験日 | 「2016/6/27」            |
| i   | <u>→++→+2/=</u> +=+2/= |

|         | "住状"  | 現稻1値   |
|---------|-------|--------|
| 0.6mm   | 100   | 100    |
| 0.3mm   | 100   | 100    |
| 0.15mm  | 96.5  | 95_100 |
| 0.074mm | 83    | 80_90  |
| 比重      | 2.749 | 2.6    |
| 水分      | 0.17  | 1.0    |

※<u>性状値、規格値は必ず半角</u>で 入力してください。 尚、比重、水分は必須です。

## 第3項 再生用添加剤の登録

次に、再生用添加剤の性状を登録します。



ボタンから

|    |                       |                       |                    |      |                  | 総括   |
|----|-----------------------|-----------------------|--------------------|------|------------------|------|
| 7  | PTIL(F)               | データ(D)                | オプミ                | )/EN | O) バージョン(        | (V)  |
|    | 粒度規格<br>混合物の<br>プランド情 | f(R)<br>規格(K)<br>報(P) |                    | 1    |                  |      |
| 13 | 材料(Z)                 | 小中国天石安排               | <b>ו</b><br>עד אלי |      | アスファルト(A)        | )    |
|    | 渡春                    | 材                     | - 186              |      | 改資約(K)<br>再生用添加路 | 刖(T) |

メニューから

メインフォームの「再生用添加剤」ボタン を押すか、フォーム上部のメニューにある 「データ(D)」→「材料(Z)」→「再生用 添加剤(T)」を押すことで、再生用添加剤 の入力フォームが表示されます。

フォームが表示されましたら、材料名、品 質、規格名を入力します。

#### 再生用添加剤の登録フォーム

|         |              | 再生添    | 加剤の登録    |       |  |
|---------|--------------|--------|----------|-------|--|
| ファイル(Z) | F. C.        |        |          |       |  |
| 材料名     | 再生用汤         | 动口育101 |          | ~     |  |
| 印刷名     | 再生用汤         | 动道     |          |       |  |
| 產地      |              |        |          |       |  |
| 納入者     | 大陸化学         | (株)    |          |       |  |
| 試験日     | 2016/06      | 6/27   | ~        |       |  |
| 項目      | 1            | 性状値    | 規格値      |       |  |
| 密度      |              | 1.014  | -        |       |  |
| 動粘度     | €[60°C]      | 195    | 80_1000  |       |  |
| 引火点     | ā.           | 260    | 230      |       |  |
| 薄膜加     | <b>1熱 変化</b> | -0.24  | -3.0_3.0 |       |  |
| 薄膜加     | 動 粘性         | 1.4    | 2.0      |       |  |
| アスファ    | ルテン          |        |          |       |  |
| 飽和分     | }            |        |          |       |  |
| 芳香加     | 美分           |        |          |       |  |
| レジン     |              |        |          |       |  |
|         |              |        | 組成分析の規格を | 報告にする |  |
|         |              | 📕 保有   | 字 保存し    | て閉じる  |  |

データは、上の例のように下限値と上限 値をアンダースコア「\_\_\_」(シフト+ろ)で 結んで入力します。

尚、「\_\_100」の場合は「100以下」を 表し、「100\_\_」の場合は[100以上]で あることを表しています。

| 材料名「再生用添加剤01」<br>印刷名「再生用添加剤」<br>納入者「大陸化学(株)」<br>試験日「2016/6/27」 |                        |                        |  |  |  |  |
|----------------------------------------------------------------|------------------------|------------------------|--|--|--|--|
|                                                                | 性状値                    | 規格値                    |  |  |  |  |
| 密度                                                             | 1.014                  | -                      |  |  |  |  |
| 動粘度                                                            | 195                    | 80_1000                |  |  |  |  |
| 引火点                                                            | 260                    | 230                    |  |  |  |  |
| 薄膜変化率                                                          | -0.24                  | -3.03.0                |  |  |  |  |
| 薄膜粘性率                                                          | 1.4                    | 2.0                    |  |  |  |  |
| ※ <u>性状値、規</u><br>、てください。i                                     | <u>格値は必ず</u><br>尚、密度は』 | <u>半角</u> で入力<br>必須です。 |  |  |  |  |

#### 第4項 骨材の登録

次に骨材を登録します。骨材には 新骨材と再生骨材があります。

| 印刷名 再生粗  | 粒度アスコン    |
|----------|-----------|
| 作成日      |           |
| 使用材料1 使用 | 材料2 配合設計1 |
| 細骨材      | クリア       |

骨材を登録するにはまず、「使用 材料2」の文字を押してページを変え ます。



すると上の画面に切り替わります。以降 この画面で動作作業を行います。 1. 新骨材の登録

次に新骨材を登録する事にします。 新骨材には細骨材と粗骨材がありま す。まずは細骨材から登録をする事 にしましょう。

#### 細骨材の登録

| í | 更用材料 <mark>1</mark> | 使用材料 | 料2 配合設計 | 1  |
|---|---------------------|------|---------|----|
| Γ | 細骨材                 | 1    | クリア     |    |
| l | 材料名                 | 産地   | 納入者     | ١Ę |
|   | 規格値                 |      |         | -  |

ボタンから

|                |                 | 12.       | 総指                     |
|----------------|-----------------|-----------|------------------------|
| ファイル(E)        | データ( <u>D</u> ) | オプシ       | ョン( <u>0)</u> バージョン(⊻) |
| 粒度規格<br>混合物の3  | (R)<br>現格(K)    |           | 1                      |
| 材料(Z)<br>使用材料1 | 127517777       | ►<br>2 80 | アスファルト(A)<br>改質材(K)    |
| 細骨相            | 1               | ク.        | 再生用添加剤(T)              |
| 材料名            | 産地              | 納         | 石粉(Y)                  |
| 規格値            |                 |           | 顔料(G)                  |
| 4              |                 | [         | 細骨材(S)                 |

メニューから

メインフォームの「細骨材」ボタン を押すか、フォーム上部のメニューに ある「データ(D)」→「材料(Z)」 →「細骨材(S)」を押すことで、細骨 材の入力フォームが表示されます。

## 細骨材の入力フォーム

| 1.00              | 846 (7)    |     | 22.04 |         |
|-------------------|------------|-----|-------|---------|
| アイル( <u>Y</u> ) : | 現格(∠)      |     |       |         |
| 材料名               | 1          |     |       | ~       |
| 印刷名               |            |     |       |         |
| -                 | -          |     |       |         |
| 産 地               |            |     |       |         |
| 納入者               |            |     |       |         |
| 試験日               | 2016/06/27 |     |       |         |
|                   |            |     |       |         |
| 位度規格名             | [0]標準      |     | - 区分  |         |
| 項目                | 性状值        | 規格値 |       | ●細骨材    |
| 53.0              |            | -   |       |         |
| 37.5              |            | -   | 項目    | 性状値     |
| 31.5              |            | 103 | 見掛密度  |         |
| 26.5              |            | -   | 表乾密度  |         |
| 19.0              |            | 170 | 絶乾密度  | 1       |
| 13.2              |            | -   | 吸水率   |         |
| 4.75              |            |     | 安定性損失 |         |
| 2.36              | -          | -   | Пス減量  |         |
| 600µ              | -          | -   | 細長扁平含 | 1       |
| 150u              | -          |     |       |         |
| 75µ               |            | -   |       |         |
|                   |            |     |       |         |
|                   |            |     |       |         |
|                   |            |     | 日 保存  | 保存して閉じる |

まず、最初に、粒度規格の登録をします。

| ファイル(Y) 規格(Z) |
|---------------|

フォーム上部のメニューにある「規格 (Z)」→「粒度規格登録(Z)」を押すこと で、粒度規格の入力フォームが表示され ます。

## 粒度規格の登録フォーム



データは、上の例のように下限値と上限 値をアンダースコア「\_\_\_」(シフト + ろ)で 結んで入力します。

尚、「\_\_100」の場合は「100以下」を表 し、「100\_\_」の場合は[100以上]であるこ とを表しています。

| サ<br>粒度規 <sup>4</sup> | ・ンプルデ<br>格名「[S | <sup>:</sup> —タ<br>A] 砂 01」 |    |
|-----------------------|----------------|-----------------------------|----|
|                       | 規              | 格値                          |    |
| 2.3                   | 6 1            | 100                         |    |
| 0.60                  | )0 70          | _90                         | i  |
| 0.30                  | 0 20           | _50                         |    |
| 0.15                  | 50 0_          | _10                         |    |
| 0.07                  | 75 0,          | _5                          |    |
| ※ <u>規格値</u><br>ください。 | [は必ず当          | <u>・角</u> で入力し              | .τ |

粒度が登録されると、必要なフルイ目だけ が表示されるようになり、すっきりしました。

| 遊規格名 | [SA]砂01 | ~     |
|------|---------|-------|
| 項目   | 性状値     | 規格値   |
| 2.36 |         | 100   |
| 600µ |         | 70_90 |
| 300µ |         | 20_50 |
| 150µ |         | 0_10  |
| 75µ  |         | 0_5   |

次に、以下のデータを入力してみましょう。

|                         | サンプルデ<br>イ料刷<br>産<br>入験日<br>「ℓ<br>(<br>(<br>(<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>) | ータ<br>砂01」<br>武路海岸」<br>大陸砂利(村<br>2016/6/27<br>田骨材」 | 朱) 」<br>」              |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|
| i                       | フルイ目                                                                                                                          | 規格値                                                | T                      |
|                         | 2.36                                                                                                                          | 100                                                |                        |
|                         | 0.600                                                                                                                         | 84                                                 |                        |
|                         | 0.300                                                                                                                         | 38.4                                               |                        |
|                         | 0.150                                                                                                                         | 2.7                                                |                        |
|                         | 0.075                                                                                                                         | 0.7                                                |                        |
|                         |                                                                                                                               |                                                    |                        |
|                         | 項目                                                                                                                            | 性状値                                                |                        |
|                         | 見掛比重                                                                                                                          | 2.711                                              |                        |
|                         | 表乾比重                                                                                                                          | 2.673                                              |                        |
|                         | かさ比重                                                                                                                          | -                                                  |                        |
|                         | 吸水量                                                                                                                           | 0.84                                               |                        |
|                         | 安全性損失                                                                                                                         | 5.59                                               |                        |
| -                       | ロス減量                                                                                                                          | -                                                  |                        |
| ※ <u>規</u><br>してく<br>水量 | <u>格値、性状</u><br>(ださい。尚<br>は必須です                                                                                               | <u>値は必ず=</u><br>、見掛、表<br><sup>-</sup> 。            | <u>半角</u> で入力<br>乾比重、吸 |

## 細骨材の登録フォーム

| INTERNAL CONTRACTOR |                | 新骨材の  | 登録    |       |
|---------------------|----------------|-------|-------|-------|
| "1,1( <u>Y</u> ) ;  | 規格( <u>Z</u> ) |       |       |       |
| 材料名                 | 砂01            |       |       | ~     |
| 印刷名                 | 砂              |       |       |       |
| 産 地                 | 庶路海岸           |       | 1     |       |
| 納入者                 | 大陸砂利(株)        |       | 1     |       |
| 試験日 2016/06/27      |                | ~     |       |       |
| 塘想格名                | [SA]#01        |       |       |       |
|                     |                |       | 区分    |       |
| 項目                  | 性状値            | 規格値   | 〇粗骨材  | ● 細骨材 |
| 2.36                | 100            | 100   |       |       |
| 600µ                | 84             | 70_90 | 項目    | 性状値   |
| 300µ                | 38.4           | 20_50 | 見掛密度  | 2.711 |
| 150µ                | 2.7            | 0_10  | 表乾密度  | 2.673 |
| 75µ                 | 0.7            | 0_5   | 絶乾密度  |       |
|                     |                |       | 吸水率   | 0.84  |
|                     |                |       | 安定性損失 | 5.59  |
|                     |                |       | ロス減量  |       |
|                     |                |       | 細E巨平今 |       |

データの入力が終わりましたら「登録」 ボタンを押してください。「登録」ボタンを 押すとメインフォームに骨材が追加されま す。

| 使用材料1 | 使用材料2 | 配合設計  | 1 配合設計 |
|-------|-------|-------|--------|
| 細骨相   | গ     | クリア   |        |
| 材料名   | 産地    | 納入者   | 見密度    |
| 規格値   |       |       | -      |
| 砂01   | 庶路海岸  | 大陸砂利( | 2.711  |

※<u>カーソル位置(上図色付き)の行にデータ</u> が登録されます。データを追加する場合には カーソル位置をマウス等で下に移動させてか ら登録します。

## 粗骨材の登録

| 粗骨柞 | 1  | クリア |   |
|-----|----|-----|---|
| 材料名 | 産地 | 納入者 | 見 |
| 規格値 |    |     | - |

ボタンから

| 2                     |                      |         |                        |
|-----------------------|----------------------|---------|------------------------|
| アイル(E)                | データ( <u>D</u> )      | オプション   | ン( <u>O) パージョン(V</u> ) |
| 粒度規格<br>混合物の<br>プラント情 | (R)<br>規格(K)<br>報(P) | 1       |                        |
| 材料(Z)<br>使用材料1        | 1XH1107772           | •<br>8C | アスファルト(A)<br>改質材(K)    |
| 細骨相                   | গ                    | ク.      | 再生用添加剤(T)              |
| 材料名                   | 産地                   | 納       | 石粉(Y)                  |
| 規格値                   |                      |         | 顔料(G)                  |
| 砂01                   | 庶路海岸                 | 大陸      | 細骨材(S)                 |
|                       |                      |         | 粗骨材(L)                 |

メニューから

**メインフォームの「粗骨材」ボタンを押す** か、フォーム上部のメニューにある「デー タ(D)」→「材料(Z)」→「粗骨材(L)」 を押すことで、粗骨材の入力フォームが表 示されます。

## 粗骨材の登録フォーム

|          | 新骨材の登録 - ロ                             |     |        |      |
|----------|----------------------------------------|-----|--------|------|
| アイル(Y) ま | 見格( <u>Z</u> )                         |     |        |      |
| 材料名      |                                        |     |        | ~    |
| 印刷名      |                                        |     |        |      |
| 產地       |                                        |     |        |      |
| 納入者      |                                        |     |        |      |
| 試験日      | 2016/06/27                             | ~   |        |      |
| 边度規格名    | [0]標準                                  | ~   |        |      |
|          | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |     | 区分     |      |
| 項目       | 性状値                                    | 規格値 | 10 粗骨材 | ○細骨材 |
| 53.0     |                                        | -   |        |      |
| 37.5     |                                        | -   | 項目     | 性状値  |
| 31.5     |                                        | -   | 見掛密度   |      |
| 26.5     |                                        | -   | 表乾密度   | 8    |
| 19.0     |                                        | -   | 絶藪密度   | 1    |
| 13.2     |                                        | -   | 吸水室    |      |
| 4.75     |                                        | -   | 安宁性指生  | -    |
| 2.36     | _                                      | -   | 口了近日   | -    |
| 600µ     | _                                      | -   |        |      |
| 300µ     |                                        | -   | 和長扁十古  |      |
| 150µ     | _                                      | -   |        |      |
|          |                                        | -   |        |      |

## 最初に粒度規格の登録をします。

| ファイル( <u>Y</u> ) | 規格( <u>Z</u> ) |
|------------------|----------------|
| 粒度規格             | 各登録(Z)         |

フォーム上部のメニューにある「規格 (Z)」→「粒度規格登録(Z)」を押すこ とで、粒度規格の入力フォームが表示さ れます。

## 粒度規格の登録フォーム



データは、上の例のように下限値と上限 値をアンダースコア「\_\_」(シフト+ろ)で 結んで入力します。

尚、「\_\_100」の場合は「100以下」を 表し、「100\_」の場合は[100以上]であ ることを表しています。

| 粒度                | フル)——<br>規格名「[Se   | 0]砕石 5-2      | .5-01」 |
|-------------------|--------------------|---------------|--------|
|                   |                    | 規格値           |        |
|                   | 13.2               | 100           |        |
|                   | 4.75               | 70_100        |        |
|                   | 2.36               | 5_25          |        |
|                   | 0.6000             | 0_10          |        |
| ※ <u>規</u><br>くださ | <u>格値は必す</u><br>い。 | <u>*半角</u> で入 | カして    |

データの入力が終わりましたら「登録」 ボタンを押してください。 粒度が登録されると、必要なフルイ目 だけが表示されるようになり、すっきりし ました。

| 試験日   | 2016/06/27 | ~       |
|-------|------------|---------|
| 粒度規格名 | [SO]砕石5-2. | .5-01 🗸 |
| 項目    | 性状値        | 規格値     |
| 53.0  |            | -       |
| 37.5  |            | -       |
| 31.5  |            | -       |
| 26.5  |            | -       |
| 19.0  |            | -       |
| 13.2  |            | 100     |
| 4.75  |            | 70_100  |
| 2.36  |            | 5_25    |
| 600µ  |            | 0_10    |
| 300µ  |            | -       |
| 150µ  |            | -       |
| 75µ   |            | 120     |

## 次に、以下のデータを入力しましょう。

| サンプルデ<br>材料名 「<br>印刷名 「<br>産地 「<br>新<br>秋<br>日<br>「<br>記 | ータ<br>砕石 5-2.5-<br>砕石 5-2.5」<br>訓路市」<br>大陸砕石(林<br>2016/6/27」<br>祖骨材」 | 01 」<br>」<br>朱) 」<br>」 |
|----------------------------------------------------------|----------------------------------------------------------------------|------------------------|
| フルイ目                                                     | 規格値                                                                  |                        |
| 13.2                                                     | 100                                                                  |                        |
| 4.75                                                     | 95.2                                                                 |                        |
| 2.36                                                     | 14.9                                                                 |                        |
| 0.600                                                    | 2.7                                                                  |                        |
|                                                          |                                                                      |                        |
| 項目                                                       | 性状値                                                                  |                        |
| 見掛比重                                                     | 2.737                                                                |                        |
| 表乾比重                                                     | 2.648                                                                |                        |
| かさ比重                                                     | -                                                                    |                        |
| 吸水量                                                      | 1.98                                                                 |                        |
| 安定性損失                                                    | 2.86                                                                 |                        |
| 山ス源量                                                     | -                                                                    |                        |
| ※ <u>規格値、性お</u><br>カしてください。<br>吸水量は必須 <sup>・</sup>       | <u>犬値は必ず</u><br>, 尚 、見掛 、<br>です。                                     | <u>半角</u> で入<br>表乾比重、  |

#### 粗骨材の登録フォーム

| 1)V(1) | ∿⊼n≓( <u>∠</u> ) |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|--------|------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 材料名    | 碎石 5-2.5-0       | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~       |
| 印刷名    | 砕石 5-2.5         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 產地     | 釧路市              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 納入者    | 大陸砕石(株)          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 試験日    | 2016/06/27       |        | ✓ 月曜日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 度規格名   | [SO]砕石5-2.       | 5-01   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|        |                  |        | 区分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 項目     | 性状値              | 規格値    | <ul> <li>1</li> <li>1</li></ul> | 〇細骨材    |
| 53.0   |                  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 37.5   |                  | -      | 項目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 性状値     |
| 31.5   |                  |        | 見掛密度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.737   |
| 26.5   |                  | -      | 表乾密度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.648   |
| 19.0   |                  |        | 絶乾密度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -       |
| 13.2   | 13.2             | 100    | 113水率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.08    |
| 4.75   | 95.2             | 70_100 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.96    |
| 2.36   | 14.9             | 5_25   | SEE19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00    |
| 600µ   | 2.7              | 0_10   | 山人波重                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -       |
| 300µ   |                  | -      | 細長扁半含                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54      |
| 150µ   |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 75µ    |                  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|        |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|        |                  |        | 🖨 ध्वमह्य                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
|        |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 保存して閉じる |

データの入力が終わりましたら「登録」 ボタンを押してください。「登録」ボタン を押すとメインフォームに骨材が追加され ます。

| 粗骨材 |     | クリア                 |       |
|-----|-----|---------------------|-------|
| 材料名 | 産地  | 納入者                 | 見密度   |
| 規格値 |     |                     | -     |
| 砕石  | 釧路市 | 大陸砕石 <mark>(</mark> | 2.737 |

※<u>カーソル位置(上図色付き)の行にデータが登録されます。データを追加する場合</u> にはカーソル位置をマウス等で下に移動さ <u>せてから登録します。</u> 同様に以下のデータも登録します。

|      | 規格値    | 1 |
|------|--------|---|
| 19   | 100    | 1 |
| 13.2 | 70_100 | ] |
| 4.75 | 5_25   | ] |
| 2.36 | 0_10   |   |

サンプルデータ 材料名「砕石 13-5-01」 印刷名「砕石 13-5」 産地 「釧路市」 納入者「大陸砕石(株)」 試験日「2016/6/27」 区分 「粗骨材」

| 19    | 100   |
|-------|-------|
| 13.2  | 98.3  |
| 4.75  | 13.3  |
| 2.36  | 2.5   |
|       |       |
| 項目    | 性状値   |
| 見掛比重  | 2.736 |
| 表乾比重  | 2.652 |
| かさ比重  | -     |
| 吸水量   | 1.85  |
| 安定性損失 | 4.02  |
| ロス減量  | _     |

※<u>規格値、性状値は必ず半角</u>で入 カしてください。尚、見掛、表乾比重、 吸水量は必須です。

| サン:<br>粒度規格名「[                                                                                                  | プルデータ<br>[SO] 砕石 20-13-01」                                                           |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 26.5<br>19<br>13.2<br>4.75                                                                                      | 規格値<br>100<br>60 <u>95</u><br>5 <u>40</u><br>0_5                                     |
| ※ <u>規格値は必</u><br>ください。                                                                                         | <u>・ず半角</u> で入力して                                                                    |
| サンプルデー<br>材料名 「砕<br>印刷名 「砕<br>産地 「釧<br>納入者 「大<br>試験日 「20<br>区分 「粗                                               | -タ<br><sup>:</sup> 石 20_13_01」<br>:石 20_13」<br>路市」<br>:陸砕石(株)」<br>)16/6/27」<br>骨材」   |
| フルイ目       26.5       19       13.2       4.75       項目       見掛比重       表乾比重       かさ比重       安定性損失       口ス滅量 | 規格値<br>100<br>89.3<br>10.1<br>1.1<br>生状値<br>2.738<br>2.659<br>-<br>1.73<br>2.70<br>- |
| * <u>規格値、性料</u><br>カしてください。<br>吸水量は必須                                                                           | <br><u>大値は必ず半角</u> で入<br>。尚、見掛、表乾比重、<br>です。                                          |

|                   |                | 新骨材の登  | 録                                     |          |
|-------------------|----------------|--------|---------------------------------------|----------|
| アイル( <u>Y</u> ) ; | 規格( <u>Z</u> ) |        |                                       |          |
| 材料名               | 碎石 13-5-01     |        |                                       | ¥        |
| 印刷名               | 砕石 13-5        |        |                                       |          |
| مادار عاد         |                |        | 6                                     |          |
| 厓 地               | shifte ut      |        |                                       |          |
| 納入者               | 大陸砕石(株)        |        |                                       |          |
| 試験日               | 2016/06/27     | ~      | 月曜日                                   |          |
| 前度相格么             | [50]珠石12,5,01  |        |                                       |          |
| 1/2///10-0        | [00]010101     |        | 区分                                    |          |
| 項目                | 性状値            | 規格値    | ⑧ 粗骨材                                 | ○細骨材     |
| 53.0              |                | -      |                                       |          |
| 37.5              |                | -      | 項目                                    | 性状値      |
| 31.5              |                | -      | 見掛密度                                  | 2.736    |
| 26.5              |                | -      | 表乾密度                                  | 2.652    |
| 19.0              | 100            | 100    | 絶乾密度                                  | -        |
| 13.2              | 98.3           | 70_100 |                                       | 1.95     |
| 4.75              | 13.3           | 5_25   | · · · · · · · · · · · · · · · · · · · | 1.05     |
| 2.36              | 2.5            | 0_10   | SIELIAA<br>DIME                       | 4.02     |
| 1.18              |                |        | 山大波里                                  | -        |
| 600µ              |                | -      | 細長扁平宮                                 | <b>T</b> |
| 425µ              | _              | -      | 10                                    |          |
| 300µ              | _              | -      |                                       |          |
| 150µ              |                | -      |                                       |          |
| 75µ               |                | -      |                                       |          |
|                   |                |        | 🚭 印刷                                  |          |
|                   |                |        | 日 保存                                  | 保存して閉じる  |



補足

骨材を追加する場合

新たに追加した直後の状態

| 粗骨材     |    | クリア     |       |
|---------|----|---------|-------|
| 材料名     | 産地 | 納入者     | 見密度   |
| 規格値     |    |         | -     |
| 砕石 5- 🗸 |    | _ 大陸砕石( | 2.737 |
|         |    |         |       |

マウス等でカーソルを下へ移動させる。

| 粗骨材 |     | クリア                 |       |
|-----|-----|---------------------|-------|
| 材料名 | 産地  | 納入者                 | 見密度   |
| 規格値 |     |                     | -     |
| 砕石  | 釧路市 | 大陸砕石 <mark>(</mark> | 2.737 |
|     |     |                     |       |
|     |     |                     |       |

#### 粗骨材登録画面へ。

| 粗骨材 |     | クリア                 |       |
|-----|-----|---------------------|-------|
| 材料名 | 産地  | 納入者                 | 見密度   |
| 規格値 |     |                     | -     |
| 砕石  | 釧路市 | 大陸砕石 <mark>(</mark> | 2.737 |
|     |     |                     |       |
|     |     |                     |       |

その後骨材登録を完了すると、骨材が追加されます。

| 粗骨材 |     | クリア                 |       |
|-----|-----|---------------------|-------|
| 材料名 | 産地  | 納入者                 | 見密度   |
| 規格値 |     |                     | -     |
| 砕石  | 釧路市 | 大陸砕石 <mark>(</mark> | 2.737 |
| 砕石  | 釧路市 | 大陸砕石 <mark>(</mark> | 2.736 |
|     |     |                     |       |

#### 骨材を削除する場合

削除したい骨材にカーソルを合わせる。

| 粗骨材     | t  | クリア                 |       |
|---------|----|---------------------|-------|
| 材料名     | 産地 | 納入者                 | 見密度   |
| 規格値     |    |                     | -     |
| 砕石 5- 🔇 |    | 大陸砕石 <mark>(</mark> | 2.737 |
|         |    |                     |       |

## 「クリア」ボタンを押す。

| 粗骨材                 |     | - <i>5</i> 97 <     |       |
|---------------------|-----|---------------------|-------|
| 材料名                 | 産地  | 納入者                 | 見密度   |
| 規格値                 |     |                     | -     |
| 砕石 <mark>5</mark> - | 釧路市 | 大陸砕石 <mark>(</mark> | 2.737 |
|                     |     |                     |       |

## 骨材が削除されます。

| 粗骨材 |    | クリア |     |
|-----|----|-----|-----|
| 材料名 | 産地 | 納入者 | 見密度 |
| 規格値 |    |     | -   |
|     |    |     |     |
|     |    |     |     |

## 骨材の呼び出しは何度でも可能です。

#### 2. 再生骨材の登録

| 再生骨 | 树  | クリア |     |
|-----|----|-----|-----|
| 材料名 | 産地 | 納入者 | IB. |
| 規格値 |    |     |     |
|     |    |     |     |

ボタンから

| 3                     |                         |        | ł                     |
|-----------------------|-------------------------|--------|-----------------------|
| アイル( <u>E</u> )       | データ( <u>D</u> )         | オプション  | ( <u>0</u> ) バージョン(⊻) |
| 粒度規構<br>混合物の<br>プラント情 | 各(R)<br>D規格(K)<br>]報(P) |        |                       |
| 材料(Z)                 |                         | •      | アスファルト(A)             |
| 史用初料1                 | 1艾开州7774                | < 186% | 改質材(K)                |
| 細骨                    | M                       | クリ     | 再生用添加剤(T)             |
| 材料名                   | 産地                      | 納入     | 石粉(Y)                 |
| 規格値                   |                         |        | 顏料(G)                 |
| 砂01                   | 砂01 庶路海岸                |        | 細骨材(S)<br>和骨材(L)      |
|                       |                         |        | 再生骨材(R)               |

メニューから

メインフォームの「再生骨材」ボタンを押 すか、フォーム上部のメニューにある「デー タ(D)」→「材料(Z)」→「再生骨材(Z)」 を押すことで、再生骨材の入力フォームが表 示されます。

## 再生骨材の登録フォーム

|         |            | 再生骨 | 材の登録 |     | - 🗆 🗙  |
|---------|------------|-----|------|-----|--------|
| ファイル(Y) | 規格(Z)      |     |      |     |        |
| 材料名     |            |     |      | ,   |        |
| 印刷名     |            |     |      |     |        |
| 產 地     |            |     |      |     |        |
| 納入者     |            |     |      |     |        |
| 試験日     | 2016/06/28 |     | ~    |     |        |
| 拉度規格名   | [0]標準      |     | •    | 標準の | 現格値にする |
| 項目      | 品質         | 規格値 | 項目   | 品質  | 規格値    |
| 53.0    |            | -   | 旧アス含 | 1   |        |
| 37.5    |            | -   | 旧アス針 | 10  |        |
| 31.5    |            | -   | 密度   |     |        |
| 26.5    |            | -   | 洗い損失 | 5   | -      |
| 19.0    |            | -   |      |     |        |
| 13.2    |            | -   |      |     |        |
| 4.75    |            | -   |      |     |        |
| 2.36    |            | -   |      |     |        |
| 600µ    |            | -   |      |     |        |
| 300µ    |            | -   |      |     |        |
| 150µ    | -          | -   |      |     |        |
| 121     |            |     | 1    |     |        |

最初に、粒度規格の登録をします。

|    | ファイル(Y)  | 規格(Z) |
|----|----------|-------|
| 粒图 | 度規格登録(Z) |       |

フォーム上部のメニューにある「規格 (Z)」→「粒度規格登録(Z)」を押すこ とで、粒度規格の入力フォームが表示さ れます。

## 粒度規格の登録フォーム



データは、上の例のように下限値と上限 値をアンダースコア「\_\_」(シフト+ろ)で 結んで入力します。

尚、「 100」の場合は「100以下」を表 し、「100\_」の場合は[100以上]である Ľ とを表しています。

|        | サンフ                   | <br>プルデータ       |      |
|--------|-----------------------|-----------------|------|
| 粒      | 度規格名                  | Γ[R]R 13-0      | -01] |
|        |                       | 規格値             |      |
|        | 13.2                  | 100             |      |
|        | 4.75                  | 65_85           |      |
|        | 2.36                  | 50_70           |      |
|        | 0.600                 | 40_60           |      |
|        | 0.300                 | 30_50           |      |
|        | 0.150                 | 10_30           |      |
| ¦ .    | 0.075                 | 5_15            |      |
| *<br>L | <u>規格値は</u><br>てください。 | <u> ふず半角</u> でフ | ι    |

-----

粒度が登録されると、登録フォームには 必要なフルイ目だけが表示されるようにな り、すっきりします。

次に、以下のデータを入力してみましょう。

| サンプ<br>材料名「 R1<br>印刷名「 R1<br>産地 「 釧<br>納入者「 大<br>試験日「 20<br>区分 「 粗 | ルデータ<br>.3-0-01」<br>.3-0」<br>路市」<br>陸舗道(株<br>)16/6/28」<br>骨材」 | ۲ (                    |
|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------|
| フルイ目                                                               | 規格値                                                           | -                      |
| 13.2                                                               | 100                                                           |                        |
| 4.75                                                               | 75.6                                                          | 9                      |
| 2.36                                                               | 62.9                                                          | -                      |
| 0.600                                                              | 48.1                                                          |                        |
| 0.300                                                              | 39.0                                                          |                        |
| 0.150                                                              | 15.6                                                          | 9<br>0                 |
| 0.075                                                              | 10.6                                                          | _                      |
| 項目                                                                 | 性状値                                                           |                        |
| 旧アス含有率                                                             | 6.49                                                          | -                      |
| 旧アス針入率                                                             | 40                                                            |                        |
| 最大比重                                                               | 2.453                                                         |                        |
| 洗い損失量                                                              | 1.12                                                          | -<br>-                 |
| ※ <u>規格値、性状</u><br>カしてください。                                        | <u>、値は必ず</u><br>尚、旧アス                                         | <u>半角</u> で入<br>、含有率 、 |

## 再生骨材の登録フォーム

|         |                | 再生育   | 材の登録      |         |        |
|---------|----------------|-------|-----------|---------|--------|
| rfil(Y) | 規格( <u>Z</u> ) |       |           |         |        |
| 材料名     | R13-0-01       |       |           |         | •      |
| 印刷名     | R13-0          |       |           |         |        |
| 產地      | 釧路市            |       | ř.        |         |        |
| 納入者     | 大陸舗道(株)        |       |           |         |        |
| 試験日     | 2016/06/28     |       | ~         |         |        |
| 度規格名    | [R]R13-0-01    |       | ~         | 標準の規    | 見格値にする |
| 項目      | 品質             | 規格値   | 項目        | 品質      | 規格値    |
| 53.0    |                | -     | -<br>旧7ス含 | 6.49    | 3.8    |
| 37.5    |                | -     | 旧アス針      | 40      | 20.0   |
| 31.5    |                | -     | 密度        | 2 453   | -      |
| 26.5    |                | -     | () 指生     | 1 1 1 2 | 5.0    |
| 19.0    |                | -     | MLC-INA.  | 1.12    | _5.0   |
| 13.2    | 100            | 100   |           |         |        |
| 4.75    | 75.6           | 65_85 |           |         |        |
| 2.36    | 62.9           | 50_70 |           |         |        |
| 600µ    | 48.1           | 40_60 |           |         |        |
| 300µ    | 39.0           | 30_50 |           |         |        |
| 150µ    | 15.6           | 10_30 | _         |         |        |
| 75µ     | 10.6           | 5_15  |           |         |        |

データの入力が終わりましたら「登録」 ボタンを押してください。「登録」ボタンを 押すとメインフォームに骨材が追加されま す。

| 再生骨相     | গ   | クリア   |      |
|----------|-----|-------|------|
| 材料名      | 産地  | 納入者   | 旧A含有 |
| 規格値      |     |       | 3.8_ |
| R13-0-01 | 釧路市 | 大陸舗道( | 6.49 |
|          |     |       |      |

※<u>カーソル位置(上図色付きの所)の</u> 行にデータが登録されます。続いてデー タを登録する場合にはカーソル位置を マウス等で下に移動させてから登録しま す。(P18・補足参照) 以上で骨材の登録は完了です。次からは、 実際に材料を組み付ける作業に入ります。 その前に、メインメニューの「保存」を押し て一旦データを保存しましょう。

最終確認として、材料のデータがきちんと 半角で入力されているかどうか確認してくだ さい。全角の数値では正常な組み付けができ なくなることがあります。

# 第3章 配合設計

#### 第1節 配合設計作業の開始

## 第1項 配合設計への移行

次は登録された材料を使って、配合設計を行います。



フォームの右上のボタンから

「データ入力」ボタンを押すことで、配合 設計作業に移行することができます。

#### 第1項 目標粒度の設定

最初に目標粒度の設定をします。



粒度規格の中央値が初期値をして既に入 カされています。必要に応じて目標粒度を 変更してください。変更する箇所にカーソル を合わせてENTER キーを押してから変更し てください。

| 目標粒度  |       | 目標粒度  |
|-------|-------|-------|
| -     |       | -     |
| -     |       | -     |
| -     | ENTER | -     |
| 100.0 |       | 100.0 |
| 97.5  |       | 97.5  |
| 80.0  |       | 80.0  |
| 45.0  |       | 45.0  |

入力が終了したら「次へ」ボタンを 押します。

#### 第2項 骨材配合率の設定



骨材配合率を設定します。以下のように 設定してください。

·配合率

| 骨材名 | 石灰石粉 | 砂01  | 碎石    | 砕石    | 碎石    | R13-0- |
|-----|------|------|-------|-------|-------|--------|
| 配合率 | 3.00 | 9.00 | 14.00 | 33.00 | 21.00 | 20.00  |

•小数点表示

合成粒度の計算は小数点第 1 ≑ 位迄使用

・並び替え

✓並べ替える(粗骨→細骨→再生→石粉の順)

「並び替える」にチェックすると骨材を 粗骨材、細骨材、再生骨材、石粉の順に 並び替えることができます。

入力が終わりましたら「次へ」ボタンを 押してください。

## 第3項 密度補正

| 密度補正  | ē     | ●1.‡() |       |       | <前へ      | 次     | <>    | 閉じる |
|-------|-------|--------|-------|-------|----------|-------|-------|-----|
| 材料名   | 砕石    | 碎石     | 碎石    | 砂01   | R13-0-01 | 石灰石粉  | 合計    | F   |
| o配合比  | 14.00 | 33.00  | 21.00 | 9.00  | 20.00    | 3.00  | 100.0 | _   |
| 0密度   | 2.693 | 2.694  | 2.699 | 2.711 | 2.716    | 2.749 |       |     |
| [@×@] | 37.7  | 88.9   | 56.7  | 24.4  | 54.3     | 8.2   | 270.2 |     |
| 補正後   | 14.0  | 32.9   | 21.0  | 9.0   | 20.1     | 3.0   | 100.0 |     |
| 正後    | 14.0  | 32.9   | 21.0  | 9.0   | 20.1     | 3.0   | 100.0 |     |

密度補正をするかどうかの設定をします。

今回のデータでは密度補正は行いません ので、「しない」に印をつけてください。

入力が終わりましたら「次へ」ボタンを押 してください。

#### 第4項 再生添加量の計算



再生添加剤の添加量を針入度試験結果 を入力し、針入度検量を描きます。

以下のデータを入力して ENTER キー を 押してください。

|   | サンブルテ | ビータ |
|---|-------|-----|
|   |       |     |
|   | 添加量   | 針入度 |
| 1 | 0     | 40  |
| 2 | 5     | 63  |
| 3 | 10    | 98  |

# ENTER キー が押されると、針入度検量線が描かれ、添加量が算出されます。



※添加量は手入力で微調整可能です。

入力が終わりましたら「次へ」ボタンを 押してください。

## 第5項 アスファルト量の設定

| (1903年1777年18月1日月) 再生:<br>再生: | 73.能力   | 55   |      | Storest Arc | HEE- | 144 |
|-------------------------------|---------|------|------|-------------|------|-----|
| マーシャル試験のため敬種のアスフ              | ケルト量を設定 | します。 |      |             |      |     |
| 両生アスファルト量 (内害!)               | 4.0     | 4.5  | 5.0  | 5.5         | 6.0  |     |
| 両生アスファルト量 (外割)                | 4.17    | 4.71 | 5.26 | 5.82        | 6.38 |     |
| 旧アスファルト量 (外割)                 |         |      | 1.39 |             |      |     |
| 再生添加剂 (外割)                    |         |      | 0.13 |             |      |     |
| 新アスファルト量(外割)                  | 2.65    | 3.19 | 3.74 | 4.30        | 4.86 |     |
|                               |         |      |      |             |      |     |
|                               |         |      |      |             |      |     |
|                               |         |      |      |             |      |     |

全アスファルト量を入力して、新アスファルト の添加量を算出します。材料に改質剤が使用 されていれば、改質剤の添加量の決定もここ で行います。

#### サンプルデータ

| 1   | 2   | 3   | 4   | 5   |
|-----|-----|-----|-----|-----|
| 4.0 | 4.5 | 5.0 | 5.5 | 6.0 |

入力が終わりましたら「次へ」ボタンを 押してください。

## 第6項 試験に用いる材料の密度



吸水率が 1.5% をこえる材料においての 密度の算出方法の設定をします。

今回は2番目の「粗骨材のみ見掛け密 度と表乾密度の平均値」に印をつけます。

入力が終わりましたら「次へ」ボタンを 押してください。

## 第7項 理論最大密度の計算

| <ul> <li>親しない場合は入力し</li> <li>超合学 発材起会・</li> <li>3.00</li> <li>18.18</li> <li>3.00</li> <li>42.86</li> </ul> | \$204<br>#<br>(%)<br>(%)<br>2.55<br>2.88<br>12.44                               | 1<br>0()<br>2.510<br>1.048 | (%)                                               | 2 00 3.002                                                        | (36)                                                                                  | 3<br>(K)                                                                                            | (96)                                                                                                                       | 4                                                                                                                                         | (%6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 相配合単 骨相配合:<br>(石田時代<br>3.00<br>(4.00 18.18<br>33.00 42.86                                                   | <ul> <li>(%)</li> <li>(%)</li> <li>2.55</li> <li>2.88</li> <li>12.44</li> </ul> | 1<br>0K)<br>2.510<br>1.048 | (%)<br>3.05                                       | 2<br>(K)<br>2.002                                                 | (%)                                                                                   | 3<br>(K)                                                                                            | (36)                                                                                                                       | 4                                                                                                                                         | (86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                          |
| 28音句)(王昭朝<br>3.00<br>14.00 18.18<br>33.00 42.86                                                             | (%)<br>2.55<br>2.88<br>13.44                                                    | 0K)<br>2.510<br>1.048      | (%)<br>3.05                                       | 00                                                                | (36)                                                                                  | 00                                                                                                  | (36)                                                                                                                       | 00                                                                                                                                        | (96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                         |
| 3.00<br>14.00 18.18<br>13.00 42.86                                                                          | 2.55<br>2.88<br>13.44                                                           | 2.510<br>1.048             | 3.05                                              | 2 002                                                             |                                                                                       |                                                                                                     |                                                                                                                            |                                                                                                                                           | 1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                        |
| 3.00<br>14.00 18.18<br>33.00 42.86                                                                          | 2.88                                                                            | 1.048                      |                                                   | 4.004                                                             | 3.56                                                                                  | 3.504                                                                                               | 4.07                                                                                                                       | 4.006                                                                                                                                     | 4.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.498                                                                                                                                                                      |
| 14.00 18.18<br>33.00 42.86                                                                                  | 13.44                                                                           |                            | 2.87                                              | 1.044                                                             | 2.85                                                                                  | 1.037                                                                                               | 2.84                                                                                                                       | 1.033                                                                                                                                     | 2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.026                                                                                                                                                                      |
| 33.00 42.86                                                                                                 |                                                                                 | 4.991                      | 13.37                                             | 4,965                                                             | 13.30                                                                                 | 4.939                                                                                               | 13.23                                                                                                                      | 4.913                                                                                                                                     | 13.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,687                                                                                                                                                                      |
|                                                                                                             | 31.68                                                                           | 11.759                     | 31.50                                             | 11.693                                                            | 31.35                                                                                 | 11.637                                                                                              | 31.17                                                                                                                      | 11.570                                                                                                                                    | 31.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.514                                                                                                                                                                     |
| 21.00 27.27                                                                                                 | 20.16                                                                           | 7.469                      | 20.06                                             | 7.432                                                             | 19.95                                                                                 | 7.392                                                                                               | 19.85                                                                                                                      | 7.355                                                                                                                                     | 19.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.314                                                                                                                                                                      |
| 9.00 11.69                                                                                                  | 8.64                                                                            | 3.187                      | 8.60                                              | 3.172                                                             | 8.55                                                                                  | 3.154                                                                                               | 8.51                                                                                                                       | 3.139                                                                                                                                     | 8.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.121                                                                                                                                                                      |
| 21.39                                                                                                       | 20.53                                                                           | 8.369                      | 20.43                                             | 8.329                                                             | 20.32                                                                                 | 8.284                                                                                               | 20.21                                                                                                                      | 8.239                                                                                                                                     | 20.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.198                                                                                                                                                                      |
|                                                                                                             | 0.12                                                                            | 0.118                      | 0.12                                              | 0.118                                                             | 0.12                                                                                  | 0.118                                                                                               | 0.12                                                                                                                       | 0.118                                                                                                                                     | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.118                                                                                                                                                                      |
|                                                                                                             |                                                                                 |                            |                                                   |                                                                   |                                                                                       |                                                                                                     |                                                                                                                            |                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            |
|                                                                                                             |                                                                                 |                            |                                                   |                                                                   |                                                                                       |                                                                                                     |                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |
|                                                                                                             |                                                                                 |                            |                                                   |                                                                   |                                                                                       |                                                                                                     |                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |
|                                                                                                             |                                                                                 |                            |                                                   |                                                                   |                                                                                       |                                                                                                     |                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |
|                                                                                                             | 3                                                                               | 9.451                      | 35                                                | .755                                                              | 40                                                                                    | 1.065                                                                                               | 40                                                                                                                         | .373                                                                                                                                      | -4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .676                                                                                                                                                                       |
|                                                                                                             | 1                                                                               | .535                       | 2                                                 | .515                                                              | 2                                                                                     | .496                                                                                                | 2                                                                                                                          | .477                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .458                                                                                                                                                                       |
|                                                                                                             | 11.39                                                                           | 1.39 20.53<br>0.12         | 1.39 20.53 8.369<br>0.12 0.118<br>39,451<br>2.535 | 1.39 20.53 8.349 20.43<br>0.12 0.118 0.12<br>39.451 33<br>2.535 2 | 1.29 20.53 8.269 20.43 8.329<br>0.12 0.118 0.12 0.118<br>39,451 39,755<br>2.535 2.515 | 1.29 20.53 8.26 20.43 8.279 20.32<br>0.12 0.18 0.12 0.118 0.12<br>39.451 29.755 44<br>2.535 2.515 2 | 1.39 20.53 8.349 20.43 8.329 20.23 8.349<br>0.12 0.118 0.12 0.118 0.12 0.118<br>339.451 39.755 40.065<br>2.535 2.515 2.466 | 1.39 20.53 8.369 20.43 8.329 20.32 8.349 20.21<br>0.12 0.118 0.12 0.118 0.12 0.118 0.12<br>39.451 39.755 40.055 41<br>2.535 2.515 2.496 2 | 1.29 20.33 8.269 20.43 8.29 20.22 8.284 20.21 8.29<br>0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118<br>0.10 0.12 0.118 0.12 0.118 0.12 0.118<br>0.12 0.118 0.12 0.118 0.12 0.118<br>0.12 0.118 0.12 0.118 0.12 0.118<br>0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118<br>0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.12 0.118 0.118 0.12 0.118 0.118 0.12 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 | 1.29 20.53 8.369 20.43 8.29 20.32 8.284 20.21 8.29 20.11<br>0.12 0.18 0.12 0.118 0.12 0.118 0.12 0.118 0.12<br>30.451 39.755 40.065 40.373 40<br>2.535 2.515 2.496 2.497 2 |

設定したアスファルト量における理論最大 密度の計算表です。

左のチェックボックスに印をつけることで、 骨材を一定量に固定することができます。 (新骨材と顔料)

確認が終わりましたら「次へ」ボタンを押 してください。

## 第8項 マーシャル安定度試験

| 混合·1<br>3<br>第 | 4回办温度<br>(合约<br>回办43 | 私民                              | 1             | <b>秋温度</b><br>60<br>45 | REAR            | Ast<br>Dillot | 密度 A-<br>19日1 8-       | 1.025<br>1.0  | 1830)<br>1094 | (日秋 市田)<br>温度 60+1<br>(30~40) | 350<br>3750<br>37水液) | 1種の求め方<br> | C##6             |          |           |   |
|----------------|----------------------|---------------------------------|---------------|------------------------|-----------------|---------------|------------------------|---------------|---------------|-------------------------------|----------------------|------------|------------------|----------|-----------|---|
| 118<br>45      | 0<br>77,77<br>61-2   | 0<br>(1)(1)<br>(1)(2)<br>(1)(2) | *<br>20<br>21 | 4<br>10<br>10          | e<br>Mil<br>Hig | e<br>UU       | 0<br>101<br>101<br>101 | •<br>現論<br>空文 | *<br>71<br>28 | 582<br>6                      | an<br>Ber            | Ritt       | 0<br>711<br>0183 | a<br>RER | 20-it     | Î |
| ĩ              | 40                   | (p)                             |               |                        |                 | Lord I        | abd.                   | ater3         | D9            | ON.                           |                      | 0%         |                  | 010      | 11/200201 |   |
|                | Ŧ ti                 | _                               |               | -                      | -               | -             |                        | 2.525         |               | -                             |                      | -          |                  | -        |           |   |
| 2              | 43                   |                                 |               |                        |                 |               |                        |               |               |                               |                      |            |                  |          |           |   |
|                | 平 拍                  | -                               |               |                        | -               | -             |                        | 2.515         |               |                               |                      |            |                  |          |           |   |
| 3              | 5.0                  |                                 |               | -                      |                 |               |                        |               |               |                               |                      |            |                  |          |           |   |

マーシャル試験の結果を入力します。

#### サンプルデータ

|      | 粘度     | 混合物温度 | 設定温度 |
|------|--------|-------|------|
| 混合時  | 85±10  | 160   | 160  |
| 締固め時 | 135±10 | 145   | 145  |

| アスファルトの比重 | 1.025 |
|-----------|-------|
| 力計の係数     | 1     |
| 締固めの回数    | 両面各50 |
| 試験温度      | 60±1℃ |
| 1         |       |

試験番号1(アス量4.0%)

| 平均厚    | 空中重量                                                             | 水中重量                                                                                                                                                                                                                   |
|--------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.4    | 1215.1                                                           | 701.7                                                                                                                                                                                                                  |
| 6.36   | 1211.3                                                           | 700.7                                                                                                                                                                                                                  |
| 6.37   | 1212.7                                                           | 701.1                                                                                                                                                                                                                  |
| 表乾重量   | 力計読み                                                             | フロー値                                                                                                                                                                                                                   |
| 1220.5 | 7                                                                | 19                                                                                                                                                                                                                     |
| 1216.1 | 6                                                                | 22                                                                                                                                                                                                                     |
| 1217.8 | 7                                                                | 20                                                                                                                                                                                                                     |
|        | 平均厚<br>6.4<br>6.36<br>6.37<br>表乾重量<br>1220.5<br>1216.1<br>1217.8 | 平均厚         空中重量           6.4         1215.1           6.36         1211.3           6.37         1212.7           表乾重量         力計読み           1220.5         7           1216.1         6           1217.8         7 |

(次のページへ)

#### 試験番号2(アス量4.5%)

|   | 平均厚    | 空中重量   | 水中重量  |
|---|--------|--------|-------|
| 1 | 6.34   | 1220.7 | 710.5 |
| 2 | 6.36   | 1223.2 | 700.7 |
| 3 | 6.36   | 1222.7 | 711.2 |
|   | 表乾重量   | 力計読み   | フロー値  |
| 1 | 1224.5 | 9      | 26    |
| 2 | 1227.5 | 8      | 22    |
| 3 | 1226.5 | 9      | 25    |

#### 試験番号3(アス量5.0%)

|   | 平均厚    | 空中重量   | 水中重量  |
|---|--------|--------|-------|
| 1 | 6.34   | 1221.1 | 710.3 |
| 2 | 6.36   | 1223.7 | 711.4 |
| 3 | 6.34   | 1223.4 | 712.3 |
|   | 表乾重量   | 力計読み   | フロー値  |
| 1 | 1224.4 | 9      | 30    |
| 2 | 1227.3 | 8      | 30    |
| 3 | 1226.3 | 9      | 31    |

試験番号4(アス量5.5%)

|   | 平均厚    | 空中重量   | 水中重量  |
|---|--------|--------|-------|
| 1 | 6.36   | 1222.8 | 708.5 |
| 2 | 6.37   | 1220.4 | 707.5 |
| 3 | 6.35   | 1221.5 | 708.7 |
|   | 表乾重量   | 力計読み   | フロー値  |
| 1 | 1225.3 | 6      | 37    |
| 2 | 1222.7 | 7      | 38    |
| 3 | 1223.7 | 7      | 39    |

#### 試験番号5(アス量6.0%)

|   | 平均厚    | 空中重量   | 水中重量  |
|---|--------|--------|-------|
| 1 | 6.36   | 1217.2 | 702.3 |
| 2 | 6.37   | 1214.8 | 700.0 |
| 3 | 6.35   | 1215.0 | 700.8 |
|   | 表乾重量   | 力計読み   | フロー値  |
| 1 | 1218.3 | 5      | 46    |
| 2 | 1216.1 | 5      | 48    |
| 3 | 1216.3 | 5      | 46    |

入力後 ENTER キーを押すと、実際密度等が 算出されます。

ノギス法で容積を求める場合はフォーム右上 の「容積の求め方」と書いてある所の「ノギス 法で求める」の所に印をつけてください。

容積の求め方 □ ノギス法で求める

## <u>尚、アス比重、力計の係数、各試験のデータ</u> <u>は必ず半角で入力してください。正しい計算結</u> <u>果が得られないことがあります。</u>

#### マーシャル試験の結果がグラフ表示されます。



グラフの形を整える。

現在のグラフの形は試験結果をそのまま繋 いだグラフのため、形に少々違和感があります。 より理想的な曲線に近づける作業をすることに しましょう。

#### 曲線の変化

1. 変化させたい曲線の赤い丸の上 にマウスを移動させます。



2. するとマウスカーソルが指のマークに 変化するので、そこでマウスの左ボタンを 押します。

| 実際密度(g/cm3) |       |      |     |       |   |  |  |  |
|-------------|-------|------|-----|-------|---|--|--|--|
| 2.41        |       |      |     |       |   |  |  |  |
| 2.39        |       |      |     |       |   |  |  |  |
| 2.38        |       |      | ~   |       |   |  |  |  |
| 2.37        |       |      | -   |       |   |  |  |  |
| 2.36        |       |      |     |       | 2 |  |  |  |
| 2.35        |       |      |     |       |   |  |  |  |
| 2.33        |       |      |     |       |   |  |  |  |
| 2.32-4      | .0 4. | 5 5. | 05. | .5 6. | 0 |  |  |  |

3. マウスのボタンを押したままマウスを 動かすとグラフが変化しますので、理想 的な形にしましょう。



他のグラフも同様に行います。



空隙率



4.5を若干下げた安定性



110

100

90

80

70

60

50

40

30



5.5 ~ 6.0を若干動かした フロー値









5.5を若干上げて 6.0を下げた

## 飽和度

グラフを動かすと連動して共通範囲も 変化します。

## 第10項 設定アス量における室内配合

| 2量 [ | 設定アス |
|------|------|
|      | 固定   |
|      |      |
| ł    |      |
|      |      |
| F    |      |
|      |      |

|       |               | 再計算    | 中央値        | <前へ    | 次<>   | 閉じる        |
|-------|---------------|--------|------------|--------|-------|------------|
|       |               |        |            |        |       |            |
| 東定ド人重 | 5.0           | %      |            |        |       |            |
|       |               | 設定アス   | ファルト量における語 | 記内配合   |       |            |
| 固定    | 材料/配合         | 外割(%)  | 含有アス量      | 内割(%)  | 含有アス量 | (K)        |
|       | 石灰石粉01        | 3.0    |            | 2.85   |       | 1.037      |
|       | 砕石 5-2.5-01   | 14.0   |            | 13.30  |       | 4.939      |
|       | 碎石 13-5-01    | 33.0   |            | 31.35  |       | 11.637     |
|       | 碎石 20_13_01   | 21.0   |            | 19.95  |       | 7.392      |
|       | 砂01           | 9.0    |            | 8.55   |       | 3.154      |
|       |               |        |            |        |       |            |
|       |               |        |            |        |       |            |
|       |               |        |            |        |       |            |
|       | R13-0-01      | 20.0   | 1.39       | 19.00  | 1.32  | 8.284      |
|       |               |        |            |        |       |            |
|       | ストアス80-100-01 |        | 3.74       |        | 3.56  | 3.504      |
|       | 再生用添加剤01      |        | 0.13       |        | 0.12  | 0.118      |
|       |               |        |            |        |       |            |
|       |               |        |            |        |       |            |
|       |               | 5.26   |            | 5.00   |       |            |
|       |               | 105 26 |            | 100.00 |       | ∑K =40.065 |

決定された設計アスファルト量で、配合率と理論 最大密度を算出します。

確認が済んだら「次へ」ボタンを押してください。

共通範囲

| アスファルト密度 |      | 1.025 |     |       | g/cm3 |   |  |
|----------|------|-------|-----|-------|-------|---|--|
|          | 下    | 下限値 」 |     | Ŀ     | 上限値   |   |  |
| 実際密度     |      |       |     |       |       |   |  |
| 空隙率      | 4    | .15   |     | e     | .00   |   |  |
| 飽和度      | 4    | .45   |     | e     | .00   |   |  |
| 安定度      | 4    | .00   |     | 6     | .00   |   |  |
| 7日~値     | 4.00 |       |     | 5.60  |       |   |  |
| S/F      |      |       |     |       |       |   |  |
| 共通範囲     | 4    | 4.45  |     |       | 5.60  |   |  |
|          | 中央   | 値     | 5.0 | (5.03 | )     | % |  |
| 実際密度     |      | _     | T   |       |       |   |  |
| 空隙率      |      |       |     |       |       |   |  |
|          |      |       |     |       |       |   |  |
| 安定度      |      |       |     |       |       |   |  |
| 70~値     |      |       |     |       |       |   |  |
| S/F      |      |       |     |       |       |   |  |

共通範囲

4.0

グラフの形がある程度整いましたら 「次へ」ボタンを押してください。

4.5 5.0 5.5

6.0

## 第11項 設定アス量におけるマーシャル試験

| B2-140-02         USE         B2-140         USE         Distance         Picture         Pict |                | \$                   |               | 600             |                  | 385>                              | <81    | ж     | Alt                     |                         | <b>69</b> 6181             |                         |                            |                        |                          |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|---------------|-----------------|------------------|-----------------------------------|--------|-------|-------------------------|-------------------------|----------------------------|-------------------------|----------------------------|------------------------|--------------------------|-------------------|
| n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n                                                                                                                                                                                                                                          | 100 N          | NWEER                | 7.03          | 構むすめ方<br>□/ギス法で | 50<br>1<br>15(R) | 087 (728)6<br>LE 60+1<br>(30~40)8 | 140000 | 1.025 | 密度 A-<br>(6数 8-         | As0<br>7)810            | 設定温度<br>160<br>145         | 10<br>15                | <b>RA</b><br>10            | MAR<br>85+10<br>135+10 | 1000 III<br>243<br>10043 | 20-H<br>21<br>100 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                      |               | •               | •                | •                                 | •      |       | 0                       |                         |                            |                         |                            |                        |                          |                   |
| N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                          |                |                      |               |                 |                  |                                   |        | -     |                         |                         |                            |                         |                            |                        | Ŧ n                      |                   |
| F         n         2.05         2.06         11.6         4.8         36.4         70.7         8.61           200<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30<br>30<br>31 | 9.00<br>8.00<br>9.00 | 9<br>11<br>13 |                 |                  |                                   |        |       | 2.375<br>2.372<br>2.380 | 514.1<br>515.9<br>514.0 | 1224.4<br>1227.3<br>1126.3 | 722.3<br>711.4<br>712.3 | 1221.1<br>1223.7<br>1223.4 | 6.36<br>6.21           | <b>∓ 10</b><br>5.0       | (E 2)             |
| H         H         L         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H                                                                                                                                                                                                                                          | 30             | 1.67                 |               | 75.7            | 16.4             | 4.8                               | 11.8   | 2.46  | 2.326                   |                         |                            |                         |                            |                        | Ŧ n                      | *18               |
| 12/0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .31            | 8.67                 |               | n2.             | 16.3             | 4.7                               | 11.4   | 2.496 | 2.575                   |                         |                            |                         |                            | _                      | Ŧ n                      | 1014              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |               |                 |                  |                                   |        |       |                         |                         |                            |                         |                            |                        | 5.0                      | (5)))<br>使源<br>以現 |
| P         2.49           228         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                      |               |                 |                  |                                   |        | 2.495 |                         |                         |                            |                         |                            |                        | ∓ n<br>5.0               | (%))<br>合現<br>試験  |

設定アス量において行われたマーシャル試験 の結果を入力します。

設定アス量が試験済のアス量であった場合は、 標準試験の初期値としてすぐに試験された結果 が入力されています。

今回の設定アス量の値 5.0 は、既に試験された アス量であったため、既に初期値が入力されて います。

#### サンプルデータ 標準試験

|   | 平均厚    | 空中重量   | 水中重量  |
|---|--------|--------|-------|
| 1 | 6.34   | 1221.1 | 710.3 |
| 2 | 6.36   | 1223.7 | 711.4 |
| 3 | 6.34   | 1223.4 | 712.3 |
|   | 表乾重量   | 力計読み   | フロー値  |
| 1 | 1224.4 | 9      | 30    |
| 2 | 1227.3 | 8      | 30    |
| З | 1226.3 | 9      | 31    |

#### 水浸試験

|        | 平均厚              | 空中重量   | 水中重量     |
|--------|------------------|--------|----------|
| 1      | 6.35             | 1201.1 | 702.1    |
| 2      | 6.32             | 1218.0 | 710.8    |
| 3      | 6.32             | 1211.4 | 700.1    |
|        | 表乾重量             | 力計読み   | フロー値     |
| 1      | 1202.8           | 9      | 31       |
|        |                  | -      |          |
| 2      | 1221.1           | 8      | 32       |
| 2<br>3 | 1221.1<br>1215.5 | 8      | 32<br>31 |

入力後 ENTER キーを押すと、実際密度 等が算出されます。

<u>尚、アス比重、力計の係数、各試験データ</u> は必ず半角で入力してください。正しい計算 結果が得られない可能性があります。

## 第1項 ホットビンの性状と合成粒度



各ホットビンの粒度と配合率を入力し、合成 粒度を算出します。

#### サンプルデータ

| ビン名   | 1ビン  | 2ビン  | 3ビン  | 4ビン  |
|-------|------|------|------|------|
| 配合率   | 12.0 | 17.0 | 26.0 | 22.0 |
| 26.5  |      |      |      | 100  |
| 19.0  |      |      | 100  | 90.1 |
| 13.2  |      | 100  | 98.3 | 9.8  |
| 4.75  | 100  | 88.5 | 1.0  |      |
| 2.36  | 98.9 | 1.0  |      |      |
| 0.600 | 61.8 |      |      |      |
| 0.300 | 34.6 |      |      |      |
| 0.150 | 2.7  |      |      |      |
| 0.075 | 1.0  |      |      |      |

入力後「再計算」ボタンを押すと、合成粒 度等が算出されます。

データの入力が終わりましたら「次へ」ボ タンを押してください。

#### 第2項 現場配合表



計測順を設定して計算重量、記録重量を 算出します。計算順は入力することができ ます。設定アス量が変わった場合は「再計 算」ボタンを押して情報を最新のものにして ください。

計算順等の各設定は次の通りです。



設定が済んだら「次へ」ボタンを押して ください。

## 第3項 抽出骨材の粒度と 回収アスファルトの針入度



抽出骨材の粒度と回収アスファルトの針入 度を入力します。

| 抽出再生  | 5.0       |            |  |
|-------|-----------|------------|--|
|       |           |            |  |
| 26.5  | 00        |            |  |
| 19.0  | 3.0       |            |  |
| 13.2  | .1        |            |  |
| 4.75  | 1.4       |            |  |
| 2.36  | 26        | <u>}.9</u> |  |
| 0.600 | 20        | ).3        |  |
| 0.300 | 15        | 5.1        |  |
| 0.150 | .6        |            |  |
| 0.075 | 0.075 4.8 |            |  |
|       |           |            |  |
| 回収アス  | 针入度       | 90         |  |

サンプルデータ

データの入力が終わりましたら「次へ」 ボタンを押してください。 第4項 試験練り混合物のマーシャル試験



次に試験練り混合物のマーシャル試験の結果を入力します。

#### サンプルデータ 標準試験

|   | 平均厚    | 空中重量   | 水中重量  |
|---|--------|--------|-------|
| 1 | 6.34   | 1224.6 | 713.4 |
| 2 | 6.34   | 1222.8 | 711.7 |
| 3 | 6.33   | 1221.9 | 711.7 |
|   | 表乾重量   | 力計読み   | フロー値  |
| 1 | 1227.5 | 9      | 31    |
| 2 | 1226.1 | 8      | 27    |
| 3 | 1225.1 | 9      | 30    |

#### 水浸試験

|   | 平均厚    | 空中重量   | 水中重量  |
|---|--------|--------|-------|
| 1 | 6.33   | 1222.3 | 711.3 |
| 2 | 6.38   | 1219.3 | 714.3 |
| 3 | 6.34   | 1224.1 | 711.0 |
|   | 表乾重量   | 力計読み   | フロー値  |
| 1 | 1225.1 | 8      | 31    |
| 2 | 1223.3 | 9      | 29    |
| 3 | 1227.3 | 9      | 31    |

<u>尚、アス比重、力計の係数、各試験データ</u> <u>は必ず半角で入力してください。正しい計算</u> <u>結果が得られないことがあります。</u>

## 第5項 最終現場配合表

|                                             |              | 920周日道                              | <                              | 約へ 沈へ                             | > 196                             | õ  |
|---------------------------------------------|--------------|-------------------------------------|--------------------------------|-----------------------------------|-----------------------------------|----|
| 現場配合表                                       |              |                                     | ビノ有効少 □ビノ有効少                   | 時相)回 2<br>少数相を全ての材料               | 0 2<br>12:00/17/3                 | ۲  |
| 1000000                                     | 0            | •                                   |                                | ۵                                 | •                                 | 11 |
| 科科小项目                                       | 配合(A)<br>(%) | 配合(8)<br>(%)                        | 混合物配合<br>(%)                   | 計量質量<br>(Kg)                      | 記錄質量<br>(Kg)                      | j, |
|                                             | 骨村           | 全配合<br>(外割)                         |                                | ©/100×<br>パッチの計量値                 | 記録紙<br>(累計通)                      |    |
| 18IN                                        | 12.0         | 12.00                               | 11.40                          | 114.00                            | 114.00                            | 1  |
| 2894                                        | 17.0         | 17.00                               | 16.15                          | 161.50                            | 275.50                            | 2  |
| 38IN                                        | 26.0         | 26.00                               | 24.70                          | 247.00                            | 522.50                            | 3  |
| 48IN                                        | 22.0         | 22.00                               | 20.90                          | 209.00                            | 731.50                            | 4  |
| R13-0-01                                    | 20.0         | 21.39                               | 20.32                          | 203.20                            | 934.70                            | 5  |
| 石灰石粉01                                      | 3.0          | 3.00                                | 2.85                           | 28.50                             | 28.50                             |    |
| ストアス                                        |              | 3.74                                | 3.56                           | 35.60                             | 35.60                             | 1  |
| 再生用添加刺01                                    |              | 0.13                                | 0.12                           | 1.20                              | 1.20                              | 2  |
|                                             |              | 0                                   |                                |                                   |                                   |    |
| 合計                                          | 100.0        | 105.26                              | 100.00                         | 1000.00                           | 1000.00                           |    |
| 名5-6-61<br>石灰石粉01<br>ストアス<br>再生用本加約01<br>合計 | 3.0          | 3.00<br>3.74<br>0.13<br>0<br>105.26 | 2.85<br>3.56<br>0.12<br>100.00 | 28.50<br>35.60<br>1.20<br>1000.00 | 28.50<br>35.60<br>1.20<br>1000.00 | 1  |

ここでは、最終現場配合表を作成する作業を します。各プラントの実態に沿った設定をしてく ださい。このデータではビンの計量単位は kg 単 位とすることにします。

まず最初に、「初期値」ボタンを押して現場 配合表のデータを読み出します。

次にビンの計量重量の表示桁を変更します。 今回はビンの計量値をkg単位で計算すること にします。

そのためにはフォーム上部にある有効桁欄を 0に設定します。

③ 2 ÷ ③ 2 \* 行を全ての材料に適用する

マウスでテキストボックス(白い四角)横に ある黒い三角の下向きの部分(▼)をクリック してください。すると、数字が変化しますので二 つとも0にしてください。

#### このようになります



この有効桁の設定はホットビンの有効 少数桁の数です。その他の桁数を修正し たい場合は、その個所にカーソルを合わ せて編集するか、「ビン有効少数桁を全 ての材料に適用する」にチェックを入れて ください。

#### 第6項 最終確認

| FRAD                                                                                                                                                                             | 2016/0                                                                                      | 04/01                                                                           |                                                                    |                                                      |                                                      | ] 混合物                                          | 物を全て表                                                                        | 示する                                                   | 混合物           | かの規格          | [RG]再:              | 生粗粒度         | עבגע  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|---------------|---------------|---------------------|--------------|-------|
| <b>使用材料</b>                                                                                                                                                                      | 1 使用                                                                                        | 材料2                                                                             | 配合設計                                                               | -1 配合                                                | 設計2                                                  | 品質·性能                                          | 能試験結                                                                         | 果                                                     |               |               |                     |              |       |
|                                                                                                                                                                                  | 再アス                                                                                         | 新アス                                                                             | 旧アス                                                                | 再生用                                                  | 砂01                                                  | 碎石                                             | 碎石                                                                           | 砕石                                                    | R13-0-        | 石灰石           |                     |              |       |
| 骨材                                                                                                                                                                               | -                                                                                           | -2                                                                              | 2                                                                  | -                                                    | 9.0                                                  | 14.0                                           | 33.0                                                                         | 21.0                                                  | 20.0          | 3.0           |                     |              |       |
| 全配合                                                                                                                                                                              | 5.0                                                                                         | 3.56                                                                            | 1.32                                                               | 0.12                                                 | 8.55                                                 | 13.30                                          | 31.35                                                                        | 19.95                                                 | 19.00         | 2.85          |                     |              |       |
|                                                                                                                                                                                  |                                                                                             |                                                                                 | _                                                                  |                                                      |                                                      |                                                |                                                                              |                                                       |               |               |                     |              |       |
|                                                                                                                                                                                  | 合成粒                                                                                         | 度                                                                               |                                                                    |                                                      |                                                      |                                                |                                                                              |                                                       |               |               |                     |              |       |
| 川相                                                                                                                                                                               | 53.0                                                                                        | 37.5                                                                            | 31.5                                                               | 26.5                                                 | 19.0                                                 | 13.2                                           | 4.75                                                                         | 2.36                                                  | 600µ          | 300µ          | 150µ                | 75µ          |       |
| 見格値                                                                                                                                                                              | -                                                                                           |                                                                                 | -                                                                  | 100                                                  | 95_10                                                | 70_90                                          | 35_55                                                                        | 20_35                                                 | 11_23         | 5_16          | 4_12                | 2_7          |       |
| 室内                                                                                                                                                                               | -                                                                                           | -                                                                               | ÷                                                                  | 100.0                                                | 97.8                                                 | 68.3                                           | 45.0                                                                         | 27.5                                                  | 20.6          | 14.3          | 6.2                 | 4.7          |       |
| パラント                                                                                                                                                                             | ē                                                                                           |                                                                                 | 5                                                                  | 100.0                                                | 97.8                                                 | 79.8                                           | 45.4                                                                         | 27.7                                                  | 20.0          | 15.0          | 6.3                 | 4.7          |       |
| マーシ                                                                                                                                                                              | ャル試験                                                                                        | 性状值                                                                             | -                                                                  |                                                      |                                                      |                                                |                                                                              |                                                       |               |               |                     |              |       |
|                                                                                                                                                                                  | 72量                                                                                         | 実密度                                                                             | 理密度                                                                | 容積率                                                  | 空隙率                                                  | 間隙率                                            | 飽和度                                                                          | 安定度                                                   | 70~値          | S/F           | 残安定                 |              |       |
| 見格値                                                                                                                                                                              | -                                                                                           | -                                                                               | -                                                                  | -                                                    | 3_7                                                  | -                                              | 65_85                                                                        | 4.9_                                                  | 20_40         | -             | -                   |              |       |
| 室内                                                                                                                                                                               | 5.0                                                                                         | 2.376                                                                           | 2.496                                                              | 11.6                                                 | 4.8                                                  | 16.4                                           | 70.7                                                                         | 8.67                                                  | 30            | 0.29          | 100.0               |              |       |
| パラント                                                                                                                                                                             | 5.0                                                                                         | 2.380                                                                           | 2.496                                                              | 11.6                                                 | 4,6                                                  | 16.2                                           | 71.6                                                                         | 8.67                                                  | 29            | 0.30          | 100.0               |              |       |
| / <del>/</del> +-                                                                                                                                                                | 2016/                                                                                       | 04/01                                                                           |                                                                    |                                                      |                                                      |                                                |                                                                              |                                                       | 10.04         | mm+842        | [pc]a               | 生物的          | ירכה: |
| TEDXE                                                                                                                                                                            | 2010/                                                                                       | 04/01                                                                           |                                                                    |                                                      | k                                                    | □ 混合物                                          | 勿を全て表                                                                        | 示する                                                   | 1861          | 则初規恰          | [KO] <del>M</del> . | 土和日本公司支      | .rxu2 |
| 使用材料                                                                                                                                                                             | 料1 使用                                                                                       | 財材料2                                                                            | 配合設計                                                               | +1 配合                                                | 設計2                                                  | 品質·性能                                          | 能試験結                                                                         | 果                                                     |               |               |                     |              |       |
| 7                                                                                                                                                                                | ホットビン                                                                                       | 粒度                                                                              |                                                                    |                                                      |                                                      |                                                |                                                                              |                                                       |               |               |                     |              |       |
| 7ルイ日                                                                                                                                                                             | 53.0                                                                                        | 37.5                                                                            | 31.5                                                               | 26.5                                                 | 19.0                                                 | 13.2                                           | 4.75                                                                         | 2.36                                                  | 600µ          | 300µ          | 150µ                | 75µ          |       |
| 1BIN                                                                                                                                                                             |                                                                                             | 8                                                                               |                                                                    |                                                      |                                                      |                                                | 100.0                                                                        | 98.9                                                  | 61.8          | 34.6          | 2.7                 | 1.0          |       |
| 2BIN                                                                                                                                                                             |                                                                                             |                                                                                 |                                                                    |                                                      |                                                      | 100.0                                          | 88.5                                                                         | 1.0                                                   |               |               |                     |              |       |
|                                                                                                                                                                                  |                                                                                             |                                                                                 | -                                                                  |                                                      | 100.0                                                | 98.3                                           | 1.0                                                                          |                                                       |               |               |                     |              |       |
| <b>3BIN</b>                                                                                                                                                                      |                                                                                             |                                                                                 |                                                                    | 100.0                                                | 00 1                                                 | 0 0                                            |                                                                              |                                                       |               |               |                     |              |       |
| 3BIN<br>4BIN                                                                                                                                                                     |                                                                                             |                                                                                 | -                                                                  | 100.0                                                | 90.1                                                 | 9.0                                            | 12527453                                                                     | -2005-00                                              | 122212 122    | 1-25-01-22    |                     | Statistics.  | -     |
| 3BIN<br>4BIN<br>R13-0-                                                                                                                                                           | -                                                                                           |                                                                                 |                                                                    | 100.0                                                | 90.1                                                 | 100.0                                          | 75.6                                                                         | 62.9                                                  | 48.1          | 39.0          | 15.6                | 10.6         |       |
| 3BIN<br>4BIN<br>R13-0-<br>石灰石                                                                                                                                                    |                                                                                             |                                                                                 |                                                                    | 100.0                                                | 50.1                                                 | 100.0                                          | 75.6                                                                         | 62.9                                                  | 48.1<br>100.0 | 39.0<br>100.0 | 15.6<br>96.5        | 10.6<br>83.0 |       |
| 3BIN<br>4BIN<br>R13-0-<br>石灰石                                                                                                                                                    | -<br>i<br>合表                                                                                |                                                                                 |                                                                    | 100.0                                                | 50.1                                                 | 100.0                                          | 75.6                                                                         | 62.9                                                  | 48.1<br>100.0 | 39.0<br>100.0 | 15.6<br>96.5        | 10.6<br>83.0 |       |
| 3BIN<br>4BIN<br>R13-0-<br>石灰石                                                                                                                                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 再生用                                                                             | 1BIN                                                               | 2BIN                                                 | 3BIN                                                 | 4BIN                                           | 75.6<br>R13-0-                                                               | 62.9<br>石灰石                                           | 48.1          | 39.0<br>100.0 | 15.6<br>96.5        | 10.6<br>83.0 |       |
| 3BIN<br>4BIN<br>R13-0<br>石灰石<br>見場配名                                                                                                                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 再生用                                                                             | <b>1BIN</b><br>12.0                                                | 2BIN<br>17.0                                         | 38IN<br>26.0                                         | 4BIN<br>22.0                                   | 75.6<br><b>R13-0</b> -<br>20.0                                               | 62.9<br>石灰石<br>3.0                                    | 48.1 100.0    | 39.0<br>100.0 | 15.6<br>96.5        | 10.6<br>83.0 |       |
| 3BIN<br>4BIN<br>R13-0<br>石灰石<br>見場配名<br>日村A<br>日村A                                                                                                                               | →<br>→<br>→<br>表<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・           | <b>再生用</b><br>0.13                                                              | <b>1BIN</b><br>12.0<br>12.00                                       | 2BIN<br>17.0                                         | 38IN<br>26.0<br>26.00                                | 4BIN<br>22.0<br>22.00                          | 75.6<br><b>R13-0</b> -<br>20.0<br>21.39                                      | 62.9<br>石灰石<br>3.0<br>3.00                            | 48.1          | 39.0          | 15.6<br>96.5        | 10.6<br>83.0 |       |
| 3BIN<br>4BIN<br>R13-0<br>石灰石<br>月材A<br>骨材A<br>骨材B<br>全配合                                                                                                                         | →<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→                          | <b>再生用</b><br>0.13<br>0.12                                                      | <b>1BIN</b><br>12.0<br>12.00<br>11.40                              | 2BIN<br>17.00<br>16.15                               | 38IN<br>26.0<br>24.70                                | 4BIN<br>22.0<br>20.90                          | 75.6<br><b>R13-0-</b><br>20.0<br>21.39<br>20.32                              | 62.9<br>石灰石<br>3.0<br>2.85                            | 48.1          | 39.0<br>100.0 | 15.6<br>96.5        | 10.6<br>83.0 |       |
| 3BIN<br>4BIN<br>R13-0<br>石灰石<br>月材A<br>骨材B<br>全計<br>二                                                                                                                            | →<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→ | <b>再生用</b><br>0.13<br>0.12<br>1.20                                              | <b>1BIN</b><br>12.0<br>12.00<br>11.40<br>114                       | 2BIN<br>17.0<br>16.15<br>162                         | 38IN<br>26.0<br>24.70<br>247                         | 4BIN<br>22.0<br>20.90<br>20.90                 | 75.6<br><b>R13-0</b> -<br>20.0<br>21.39<br>20.32<br>20.32                    | 62.9<br>石灰石<br>3.0<br>2.85<br>28.50                   | 48.1 100.0    | 39.0          | 15.6<br>96.5        | 10.6         |       |
| 3BIN<br>4BIN<br>R13-0<br>石灰石<br>見場配名<br>骨材A<br>全計質量                                                                                                                              | →<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→ | <b>再生用</b><br>0.13<br>0.12<br>1.20<br>1.20                                      | <b>1BIN</b><br>12.0<br>12.00<br>11.40<br>114<br>114                | 2BIN<br>17.0<br>16.15<br>162<br>276                  | 38IN<br>26.0<br>24.70<br>247<br>523                  | 4BIN<br>22.00<br>20.90<br>209<br>732           | 75.6<br><b>R13-0</b> -<br>20.0<br>21.39<br>20.32<br>203<br>935               | 62.9<br>石灰石<br>3.0<br>2.85<br>28.50<br>28.50          | 48.1 100.0    | 39.0          | 15.6<br>96.5        | 10.6<br>83.0 |       |
| 3BIN<br>4BIN<br>R13-0<br>石灰石<br>何大石<br>中村A<br>全配合<br>量<br>記<br>雪<br>環<br>星<br>細出調<br>調<br>調<br>調<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二 | →<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→                          | <ul> <li>再生用</li> <li>0.13</li> <li>0.12</li> <li>1.20</li> <li>1.20</li> </ul> | <b>1BIN</b><br>12.0<br>12.00<br>11.40<br>114<br>114                | 2BIN<br>17.0<br>16.15<br>162<br>276                  | <b>3BIN</b><br>26.0<br>26.00<br>24.70<br>247<br>523  | 4BIN<br>22.0<br>20.90<br>20.90<br>7.32         | 75.6<br><b>R13-0</b> -<br>20.0<br>21.39<br>20.32<br>203<br>935               | 62.9<br>石灰石<br>3.0<br>2.85<br>28.50<br>28.50          | 48.1 100.0    | 39.0          | 15.6<br>96.5        | 10.6<br>83.0 |       |
| 3BIN<br>4BIN<br>R13-0<br>石灰石<br>月場配名<br>月材A<br>全配合量<br>記質量<br>油出調調                                                                                                               | →<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→                          | 再生用<br>0.13<br>0.12<br>1.20<br>1.20                                             | <b>1BIN</b><br>12.0<br>12.00<br>11.40<br>114<br>114<br><b>37.5</b> | 2BIN<br>17.0<br>17.00<br>16.15<br>162<br>276<br>31.5 | 38IN<br>26.0<br>26.00<br>24.70<br>247<br>523<br>26.5 | 4BIN<br>22.0<br>20.90<br>20.90<br>7.32<br>19.0 | 75.6<br><b>R13-0-</b><br>20.0<br>21.39<br>20.32<br>203<br>935<br><b>I3.2</b> | 62.9<br>石灰石<br>3.0<br>2.85<br>28.50<br>28.50<br>28.50 | 48.1 100.0    | 39.0<br>100.0 | 15.6<br>96.5        | 10.6<br>83.0 | 75μ   |

サンプルデータを全て入力して、メインフォー ムに戻った時、「配合設計」ページにきちんと 数値が入っているかどうかを確認してください。 これで全てのデータ入力は終了しま した。確認が終わったら、次は印刷処 理を行います。

# 第4章 配合設計書の印刷

## 第1節 印刷の開始

## 第1項 印刷フォームの表示

| 🖨 印刷  | 🔚 保存  |
|-------|-------|
| 骨材の選択 | データ入力 |

ボタンから

| 1 |                      |
|---|----------------------|
| 2 | ァイル(F) データ(D) オプション( |
|   | 新規作成(U)              |
|   | 開<(O)                |
|   | 保存(S)                |
|   | 名前を変えて保存(C)          |
|   | 合材削除(D)              |
|   | 印刷(P)                |
|   | 閉じる(Z)               |

## 印刷設定フォーム

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | 印刷設定                                 | 74-17                                                                                                                |                                            | - 🗆 🗙             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| プリンタの設                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 定プリンタ設定                                                   |                                      | オフセット<br>右へ 30 🗘                                                                                                     | mm                                         | プレビュー             |
| プリンタ名<br>フォント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MS 明朝                                                     | ~                                    | 下へ 20 🖨                                                                                                              | mm                                         | ED周J              |
| 印刷項目の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 词選択                                                       |                                      |                                                                                                                      |                                            |                   |
| <ul> <li>✓</li> <li>✓</li> <li>総括 骨</li> <li>✓</li> <li></li> <li>&lt;</li></ul> | 表<br>性扶<br>針入度への調整<br>粒度<br>配合<br>R量の計算<br>配合表<br>最大密度の計算 | Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y | マーシャル安定度試験<br>マーシャル活験結果(医<br>後定アス量における室)<br>をアス量におけるマー<br>やトといの性状と合成<br>現場配合表<br>試験練り混合物のマー<br>曲出試験<br>最終現場配合表<br>全て | 結果一覧ま<br>す配合<br>シャル性状<br>粒度<br>シャル性状<br>違択 | 後<br>値<br>金で選択しない |
| □ 確認印欄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | を印刷する 印刷部数                                                | 1                                    | □総括                                                                                                                  | 表に突き固                                      | め回数を描画する          |
| <ul> <li>マーシャル安</li> <li>再生添加</li> <li>総括表の:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 定度試験結果一覧に再生骨材配<br>剤の「組成分析」を描画する<br>規格値を赤文字で描画する           | 合率を描画                                | 193                                                                                                                  | 1保存                                        | 閉じる               |

メニューから

メインフォームの「印刷」ボタンを押す か、フォーム上部のメニューにある「ファ イル(F)」→「印刷(P)」を押すことで、 印刷設定フォームが表示されます。

#### 第1項 プリンタの設定

|        |                    | 印刷設 |
|--------|--------------------|-----|
| プリンタの設 | 定                  |     |
|        | プリンタ設定             |     |
| プリンタ名  | DocuCentre-V C3376 | · • |
| フォント   | MS 明朝              | ~   |

印刷するプリンタを選択することができ ますので使用するプリンタとフォント名を 選択してください。

#### 第2項 オフセット

オフセットとは、配合設計書の印刷位置 がプリンタ機種によって、多少のズレが生 じる事があるため、印刷位置の微調整に 使います。通常はどちらとも20mmの設定 です。

## 第3項 プリンタの設定

「プリンタの設定」で使用するプリンタ 名とフォントを決定してください。 設定が済んだら「プレビュー」ボタンか 「印刷」ボタンを押します。

#### 第4項 設定保存

オフセットや普段使うプリンタ名は「設 定保存」ボタンを押して保存してください。 次回からは設定を変えることなく印刷がで きます。

#### 第5項 印刷項目の選択

印刷するページを選択することができま す。印刷したいページにチェックを付けて 選択してください。

「 プレビュー 」 ボタンを押すとプレビュー 画面を見ることができます。 プレビューフォーム

| 1 7.43-画版 - C - C                                                             | 🕿 76                                   |                                  |
|-------------------------------------------------------------------------------|----------------------------------------|----------------------------------|
| << >> + 60% 01-97-167-9 c64-9ema 0344 Mbc6                                    | << >> + 60% 1パーダイ1<br>印刷版数 1           | 64-2 204-29000 EDBI MOS          |
| 再生加熱アスファルト<br>混合物配合設計書<br>########<br>########<br>#########                   | << >>                                  | ページの移動<br>左 : 前ページへ<br>右 : 次ページへ |
| 大道 東京 田 大 由 定<br>management                                                   | - + <u>60%</u><br>印刷部数<br>(30% ~ 200%) | プレビューの拡大率<br>+ : 拡大<br>ー : 縮小    |
|                                                                               | 1ページ/16ページ                             | 現在表示されている<br>ページ印刷をします。          |
| 印刷のプレビューが表示されますの<br>で、実際に紙に出力する前に確認する<br>ことができます。また、このフォームで<br>各ページ毎の印刷もできます。 | 白虎                                     | 一括印刷します。                         |
|                                                                               | 閉じる                                    | プレビューを終了し、<br>印刷設定フォームに          |

## プレビューフォームのボタン

戻ります。

# 第5章 合材ファイルの管理

## 第1節 合材ファイルを開く

第1項 作成した合材ファイルを開く

作成した配合設計データ(以下合材 ファイル)を呼び出すには

| 7  | ァイル(F) データ(D) オプション( |
|----|----------------------|
|    | 新規作成(U)              |
| ĺ. | 開<(0)                |
|    | 保存(S)<br>名前を変えて保存(C) |
|    | 合材削除(D)              |
|    | 印刷(P)                |
|    | 閉じる(Z)               |

|             |                 |                   |          | 総括表:tairiku- |
|-------------|-----------------|-------------------|----------|--------------|
| ファイル(E)     | データ( <u>D</u> ) | オプション( <u>0</u> ) | パージョン(⊻) |              |
| 混合物名<br>印刷名 | 再生粗粒度。          | 01ע <u>ר ג</u> ק  |          | ~            |
| 作成日         |                 |                   |          | □混合物を全て表示する  |

フォーム上部メニューにある「ファイ ル(F)」→「開く(O)」を選択するか、 「混合物名」の横にある「▼」をク リックし合材名を選択してください。

#### 第1項 合材ファイルを保存する

合材ファイルを保存するには「混合物名」 欄に名前が入力されている。

条件下において、フォーム右上の「保存」 ボタン「データ入力」ボタンを押すか、フォー ム上部メニューにある「ファイル」→「保存」 を選択してください。

| 🖨 印刷  | 🔚 保存  |
|-------|-------|
| 骨材の選択 | データ入力 |

| ファイル(F) | データ(D)  | オプション |
|---------|---------|-------|
| 新規作成    | 乾(U)    |       |
| 開<(O)   |         |       |
| 保存(S)   |         | 1     |
| 名前を変    | えて保存(C) |       |
| 合材削限    | ≹(D)    |       |
| 印刷(P)   |         |       |
| 閉じる(Z   | )       |       |

#### 第2項 名前を変えて保存

合材ファイルの名前を変えて保存するには フォーム上部メニューにある「ファイル(F)」 →「名前を変えて保存(C)」を選択してくだ さい。

尚、ファイルを開いた後、混合物名を変更し て保存をした場合は、配合設計「データ入力 以降のデータは保存されません。

| 2                     |
|-----------------------|
| ファイル(F) データ(D) オプション( |
| 新規作成(U)               |
| 開<(O)                 |
| 保存(S)                 |
| 名前を変えて保存(C)           |
| 合材削除(D)               |
| 印刷(P)                 |
| 閉じる(Z)                |

| 名前を変えて保存       | × |
|----------------|---|
| 新しい名前<br> <br> |   |

## 第1項 合材ファイルの削除

合材ファイルを削除するには削除したい合材 ファイルを用いた後フォーム上部のメニューに ある「ファイル(F)」→「合材削除(D)」を選 択してください。

| 2                     |
|-----------------------|
| ファイル(F) データ(D) オプション( |
| 新規作成(U)               |
| 開<(0)                 |
| 保存(S)                 |
| 名前を変えて保存(C)           |
| 合材削除(D)               |
| 印刷(P)                 |
| 閉じる(Z)                |

年度変わりを期にデータをバックアップしたい

最初に「オプション(O)」→「環境設定(O)」を 選び、環境設定画面の「保存場所」を確認します。

| 4         |                |             |            | 各種設定        |    | ×   |
|-----------|----------------|-------------|------------|-------------|----|-----|
|           |                |             |            |             | 登録 | 閉じる |
| 保存場所      | 計算             | ED刷         | その他        |             |    |     |
| データの      | D(呆存先<br>・ドピアデ | :<br>一夕の(呆: | 存先         |             |    |     |
| C:        | ¥Users¥        | tairiku¥D   | ocuments¥T | AIRIKU¥H26¥ |    | 参照  |
| 品行        | 雪管理テ           | 一夕の保        | 存先         |             |    |     |
| C:        | ¥Users¥        | tairiku¥D   | ocuments¥T | AIRIKU¥H26¥ |    | 参照  |
| オープニン     | バ画面            |             |            |             |    | 参照  |
| 合材ファ<br>関 | イルの関<br>連付ける   | 連付け         | 解释         |             |    |     |

初期設定では

| 配合設計 | C:¥Users¥tairiku¥Documents¥TAIRIKU¥ |
|------|-------------------------------------|
| 品質管理 | C:¥Users¥tairiku¥Documents¥TAIRIKU¥ |

となっております。

次にデスクトップの「マイコンピュータ」を開き、保存先フォルダの 1つ上までフォルダを開きます。

初期設定では

C:¥Users¥tairiku¥Documents¥TAIRIKU¥

まで開きます。

| 名前  | ~ |  |
|-----|---|--|
| H26 |   |  |

フォルダを開いたらウィンドウ内の何もない部分で右クリックし、 「新規作成」→「フォルダ」を選択し、フォルダを新しく作り、 フォルダ名を西暦や元号など、年度が分かりやすい名前にしておきます。



最後に保存先に指定しているデータフォルダを右クリックし、 「コピー」を選択し、その後、先ほど作成したフォルダを開き、 右クリックし「貼り付け」を選択します。

※品質管理のデータを別に指定している場合も同様に行って ください。